Academic Journal

On the Carleson duality

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: On the Carleson duality
Συγγραφείς: Hytönen, Tuomas, Rosén, Andreas, 1974
Πηγή: Arkiv for Matematik. 51(2):293-313
Θεματικοί όροι: non-tangential maximal function, Carleson’s inequality, dyadic model.
Περιγραφή: As a tool for solving the Neumann problem for divergence form equations, Kenig and Pipher introduced the space X of functions on the half space, such that the non-tangential maximal function of their L_2-Whitney averages belongs to L_2 on the boundary. In this paper, answering questions which arose from recent studies of boundary value problems by Auscher and the second author, we find the pre-dual of X, and characterize the pointwise multipliers from X to L_2 on the half space as the well-known Carleson-type space of functions introduced by Dahlberg. We also extend these results to L_p generalizations of the space X. Our results elaborate on the well-known duality between Carleson measures and non-tangential maximal functions.
Σύνδεσμος πρόσβασης: https://research.chalmers.se/publication/207376
Βάση Δεδομένων: SwePub
Περιγραφή
ISSN:18712487
00042080
DOI:10.1007/s11512-012-0167-7