Academic Journal
Vanilla Bayesian Optimization Performs Great in High Dimensions
| Title: | Vanilla Bayesian Optimization Performs Great in High Dimensions |
|---|---|
| Authors: | Hvarfner, Carl, Hellsten, Erik O., Nardi, Luigi |
| Contributors: | Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator, Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Robotics and Semantic Systems, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Robotik och Semantiska System, Originator, Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator |
| Source: | Proceedings of Machine Learning Research Bayesian optimization across the spectrum of knowledge. 235:20793-20817 |
| Subject Terms: | Natural Sciences, Computer and Information Sciences, Computer graphics and computer vision, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorgrafik och datorseende, Mathematical Sciences, Computational Mathematics, Matematik, Beräkningsmatematik |
| Description: | High-dimensional problems have long been considered the Achilles' heel of Bayesian optimization. Spurred by the curse of dimensionality, a large collection of algorithms aim to make it more performant in this setting, commonly by imposing various simplifying assumptions on the objective. In this paper, we identify the degeneracies that make vanilla Bayesian optimization poorly suited to high-dimensional tasks, and further show how existing algorithms address these degeneracies through the lens of lowering the model complexity. Moreover, we propose an enhancement to the prior assumptions that are typical to vanilla Bayesian optimization, which reduces the complexity to manageable levels without imposing structural restrictions on the objective. Our modification - a simple scaling of the Gaussian process lengthscale prior with the dimensionality - reveals that standard Bayesian optimization works drastically better than previously thought in high dimensions, clearly outperforming existing state-of-the-art algorithms on multiple commonly considered real-world high-dimensional tasks. |
| Access URL: | https://proceedings.mlr.press/v235/hussain24a.html |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://proceedings.mlr.press/v235/hussain24a.html# Name: EDS - SwePub (ns324271) Category: fullText Text: View record in SwePub – Url: https://resolver.ebsco.com/c/fiv2js/result?sid=EBSCO:edsswe&genre=article&issn=26403498&ISBN=&volume=235&issue=&date=20240101&spage=20793&pages=20793-20817&title=Proceedings of Machine Learning Research Bayesian optimization across the spectrum of knowledge&atitle=Vanilla%20Bayesian%20Optimization%20Performs%20Great%20in%20High%20Dimensions&aulast=Hvarfner%2C%20Carl&id=DOI: Name: Full Text Finder (for New FTF UI) (ns324271) Category: fullText Text: Full Text Finder MouseOverText: Full Text Finder |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.4d9e7bc3.2aab.4c5d.a341.67c40b8e20d3 RelevancyScore: 1064 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1064.41540527344 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Vanilla Bayesian Optimization Performs Great in High Dimensions – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Hvarfner%2C+Carl%22">Hvarfner, Carl</searchLink><br /><searchLink fieldCode="AR" term="%22Hellsten%2C+Erik+O%2E%22">Hellsten, Erik O.</searchLink><br /><searchLink fieldCode="AR" term="%22Nardi%2C+Luigi%22">Nardi, Luigi</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator<br />Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Robotics and Semantic Systems, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Robotik och Semantiska System, Originator<br />Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator – Name: TitleSource Label: Source Group: Src Data: <i>Proceedings of Machine Learning Research Bayesian optimization across the spectrum of knowledge</i>. 235:20793-20817 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+graphics+and+computer+vision%22">Computer graphics and computer vision</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Datorgrafik+och+datorseende%22">Datorgrafik och datorseende</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Sciences%22">Mathematical Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computational+Mathematics%22">Computational Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Matematik%22">Matematik</searchLink><br /><searchLink fieldCode="DE" term="%22Beräkningsmatematik%22">Beräkningsmatematik</searchLink> – Name: Abstract Label: Description Group: Ab Data: High-dimensional problems have long been considered the Achilles' heel of Bayesian optimization. Spurred by the curse of dimensionality, a large collection of algorithms aim to make it more performant in this setting, commonly by imposing various simplifying assumptions on the objective. In this paper, we identify the degeneracies that make vanilla Bayesian optimization poorly suited to high-dimensional tasks, and further show how existing algorithms address these degeneracies through the lens of lowering the model complexity. Moreover, we propose an enhancement to the prior assumptions that are typical to vanilla Bayesian optimization, which reduces the complexity to manageable levels without imposing structural restrictions on the objective. Our modification - a simple scaling of the Gaussian process lengthscale prior with the dimensionality - reveals that standard Bayesian optimization works drastically better than previously thought in high dimensions, clearly outperforming existing state-of-the-art algorithms on multiple commonly considered real-world high-dimensional tasks. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://proceedings.mlr.press/v235/hussain24a.html" linkWindow="_blank">https://proceedings.mlr.press/v235/hussain24a.html</link> |
| PLink | https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.4d9e7bc3.2aab.4c5d.a341.67c40b8e20d3 |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: English PhysicalDescription: Pagination: PageCount: 25 StartPage: 20793 Subjects: – SubjectFull: Natural Sciences Type: general – SubjectFull: Computer and Information Sciences Type: general – SubjectFull: Computer graphics and computer vision Type: general – SubjectFull: Naturvetenskap Type: general – SubjectFull: Data- och informationsvetenskap (Datateknik) Type: general – SubjectFull: Datorgrafik och datorseende Type: general – SubjectFull: Mathematical Sciences Type: general – SubjectFull: Computational Mathematics Type: general – SubjectFull: Matematik Type: general – SubjectFull: Beräkningsmatematik Type: general Titles: – TitleFull: Vanilla Bayesian Optimization Performs Great in High Dimensions Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Hvarfner, Carl – PersonEntity: Name: NameFull: Hellsten, Erik O. – PersonEntity: Name: NameFull: Nardi, Luigi – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Robotics and Semantic Systems, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Robotik och Semantiska System, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2024 Identifiers: – Type: issn-print Value: 26403498 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 235 Titles: – TitleFull: Proceedings of Machine Learning Research Bayesian optimization across the spectrum of knowledge Type: main |
| ResultId | 1 |