Academic Journal

Vanilla Bayesian Optimization Performs Great in High Dimensions

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Vanilla Bayesian Optimization Performs Great in High Dimensions
Συγγραφείς: Hvarfner, Carl, Hellsten, Erik O., Nardi, Luigi
Συνεισφορές: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator, Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Robotics and Semantic Systems, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Robotik och Semantiska System, Originator, Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator
Πηγή: Proceedings of Machine Learning Research Bayesian optimization across the spectrum of knowledge. 235:20793-20817
Θεματικοί όροι: Natural Sciences, Computer and Information Sciences, Computer graphics and computer vision, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorgrafik och datorseende, Mathematical Sciences, Computational Mathematics, Matematik, Beräkningsmatematik
Περιγραφή: High-dimensional problems have long been considered the Achilles' heel of Bayesian optimization. Spurred by the curse of dimensionality, a large collection of algorithms aim to make it more performant in this setting, commonly by imposing various simplifying assumptions on the objective. In this paper, we identify the degeneracies that make vanilla Bayesian optimization poorly suited to high-dimensional tasks, and further show how existing algorithms address these degeneracies through the lens of lowering the model complexity. Moreover, we propose an enhancement to the prior assumptions that are typical to vanilla Bayesian optimization, which reduces the complexity to manageable levels without imposing structural restrictions on the objective. Our modification - a simple scaling of the Gaussian process lengthscale prior with the dimensionality - reveals that standard Bayesian optimization works drastically better than previously thought in high dimensions, clearly outperforming existing state-of-the-art algorithms on multiple commonly considered real-world high-dimensional tasks.
Σύνδεσμος πρόσβασης: https://proceedings.mlr.press/v235/hussain24a.html
Βάση Δεδομένων: SwePub