Hybridizing Target- and SHAP-Encoded Features for Algorithm Selection in Mixed-Variable Black-Box Optimization

Bibliographic Details
Title: Hybridizing Target- and SHAP-Encoded Features for Algorithm Selection in Mixed-Variable Black-Box Optimization
Authors: Dietrich, KonstantinAff14, Aff15, Prager, Raphael PatrickAff16, Doerr, CarolaAff17, Trautmann, HeikeAff18, Aff19
Contributors: Goos, Gerhard, Series EditorAff1, Hartmanis, Juris, Founding EditorAff2, Bertino, Elisa, Editorial Board MemberAff3, Gao, Wen, Editorial Board MemberAff4, Steffen, Bernhard, Editorial Board MemberAff5, Yung, Moti, Editorial Board MemberAff6, Affenzeller, Michael, editorAff7, Winkler, Stephan M., editorAff8, Kononova, Anna V., editorAff9, Trautmann, Heike, editorAff10, Tušar, Tea, editorAff11, Machado, Penousal, editorAff12, Bäck, Thomas, editorAff13
Source: Parallel Problem Solving from Nature – PPSN XVIII : 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14–18, 2024, Proceedings, Part II. 15149:154-169
Database: Springer Nature eBooks
Description
ISBN:9783031700675
9783031700682
DOI:10.1007/978-3-031-70068-2_10