Action Logic is Undecidable

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Action Logic is Undecidable
Συγγραφείς: Kuznetsov, Stepan
Έτος έκδοσης: 2019
Συλλογή: Computer Science
Mathematics
Θεματικοί όροι: Computer Science - Logic in Computer Science, Mathematics - Logic, F.4.1, I.2.3, F.4.1, I.2.3
Περιγραφή: Action logic is the algebraic logic (inequational theory) of residuated Kleene lattices. This logic involves Kleene star, axiomatized by an induction scheme. For a stronger system which uses an $\omega$-rule instead (infinitary action logic) Buszkowski and Palka (2007) have proved $\Pi_1^0$-completeness (thus, undecidability). Decidability of action logic itself was an open question, raised by D. Kozen in 1994. In this article, we show that it is undecidable, more precisely, $\Sigma_1^0$-complete. We also prove the same complexity results for all recursively enumerable logics between action logic and infinitary action logic; for fragments of those only one of the two lattice (additive) connectives; for action logic extended with the law of distributivity.
Comment: 33 pages
Τύπος εγγράφου: Working Paper
Σύνδεσμος πρόσβασης: http://arxiv.org/abs/1912.11273
Αριθμός Καταχώρησης: edsarx.1912.11273
Βάση Δεδομένων: arXiv
Περιγραφή
Η περιγραφή δεν είναι διαθέσιμη