Academic Journal

СОВРЕМЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕВЫПУКЛЫХ ЗАДАЧ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Bibliographic Details
Title: СОВРЕМЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕВЫПУКЛЫХ ЗАДАЧ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ
Source: Известия Иркутского государственного университета. Серия: Математика.
Publisher Information: Федеральное государственное бюджетное образовательное учреждение высшего образования «Иркутский государственный университет», 2014.
Publication Year: 2014
Subject Terms: ПРИНЦИП ПОНТРЯГИНА,PONTRYAGIN PRINCIPLE,МЕТОДЫ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ,OPTIMAL CONTROL METHODS,УСЛОВИЯ ГЛОБАЛЬНОЙ ОПТИМАЛЬНОСТИ,GLOBAL OPTIMALITY CONDITIONS
Description: The paper presents a few remarks on the evolution of Irkutsks school of O. V. Vasiliev on optimal control methods based on Pontryagin principle. Besides, one reviews some features of Pontryagin principle, in particular, its sufficiency and constructive property for linear (on the state) control systems and convex cost functionals. Further, some historical notes on the development of optimal control methods based on Pontryagin principle are considered. In particular, a separated attention has been paid to the impact of Irkutsk school of O. V. Vasiliev in the theory and method of optimal control, and the achievements of the former postgraduate student of O. V. Vasiliev professor V. A. Srochko. The mathematical presentation is concentrated on the story of the invention and investigations of the convergence and substantiation of the consecutive approximates method based on Pontryagin principle. In addition, one considers new Global Optimality Conditions in a general nonconvex optimal control problem with Bolza goal functionals. Moreover, together with the necessity proof of global optimality conditions we investigate its relations to Pontryagin principle. Besides, the constructive (algorithmic) property of new optimality conditions is also demonstrated, and an example of nonconvex optimal control problems has been solved by means of global optimality conditions. In this example, we performed an improvement of a feasible control satisfying Pontryagin principle with a corresponding improvement of the cost functional. Finally, employing Pontryagin principle and new Global Optimality Conditions we give a demonstration of construction of a optimal control method and provide for new result on its convergence.
Работа представляет некоторые заметки по эволюции иркутской школы О.В. Васильева по методам оптимального управления, основанным на принципе максимума (минимума) Л. С. Понтрягина. При этом исследуются некоторые особенности самого принципа Понтрягина, в частности, его достаточность и конструктивное свойство для линейных систем управления и выпуклых (по состоянию) функционалов. Приведены исторические замечания по разработке методов оптимального управления, базирующихся на принципе Понтрягина. При этом особое внимание уделено вкладу иркутской школы О. В. Васильева по теории и методам оптимального управления, а также вкладу любимого ученика О. В. Васильева профессора В. А. Срочко. Математическая презентация сконцентрирована на истории создания и исследованиям по сходимости и обоснованию метода последовательных приближений, основанного на принципе Понтрягина. Далее рассматриваются новые условия глобальной оптимальности в общей невыпуклой задаче оптимального управления с целевым функционалом Больца. При этом наряду с доказательством необходимости условий глобальной оптимальности исследуются их взаимосвязи с принципом Понтрягина. Устанавливается также конструктивное (алгоритмическое) свойство новых условий глобальной оптимальности. Кроме того, приводится пример решения невыпуклой задачи оптимального управления посредством условий глобальной оптимальности, когда происходит улучшение управления, удовлетворяющего принципу Понтрягина, с непременным улучшением значения целевого функционала. В заключение демонстрируется также возможность построения численных методов, использующих принцип Понтрягина и новые условия глобальной оптимальности, и приводятся результаты по сходимости.
Document Type: Article
File Description: text/html
Language: Russian
ISSN: 2541-8785
1997-7670
Access URL: http://cyberleninka.ru/article_covers/16963539.png
http://cyberleninka.ru/article/n/sovremennye-metody-resheniya-nevypuklyh-zadach-optimalnogo-upravleniya
Accession Number: edsair.od......2806..c6597154e8a1ec94f4e9a8e1f912664e
Database: OpenAIRE
Description
ISSN:25418785
19977670