Academic Journal

Generalizing Roberts' characterization of unit interval graphs

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Generalizing Roberts' characterization of unit interval graphs
Συγγραφείς: Ardévol Martínez, Virginia, Rizzi, Romeo, Saffidine, Abdallah, Sikora, Florian, Vialette, Stéphane
Συνεισφορές: Virginia Ardévol Martínez and Romeo Rizzi and Abdallah Saffidine and Florian Sikora and Stéphane Vialette, Sikora, Florian
Publication Status: Preprint
Στοιχεία εκδότη: arXiv, 2024.
Έτος έκδοσης: 2024
Θεματικοί όροι: Unit Interval Graphs, FOS: Computer and information sciences, Mathematics of computing → Graph theory, Discrete Mathematics (cs.DM), Characterization, [INFO] Computer Science [cs], Computer Science - Data Structures and Algorithms, Interval graphs, Multiple Interval Graphs, Data Structures and Algorithms (cs.DS), ddc:004, Computer Science - Discrete Mathematics
Περιγραφή: For any natural number $d$, a graph $G$ is a (disjoint) $d$-interval graph if it is the intersection graph of (disjoint) $d$-intervals, the union of $d$ (disjoint) intervals on the real line. Two important subclasses of $d$-interval graphs are unit and balanced $d$-interval graphs (where every interval has unit length or all the intervals associated to a same vertex have the same length, respectively). A celebrated result by Roberts gives a simple characterization of unit interval graphs being exactly claw-free interval graphs. Here, we study the generalization of this characterization for $d$-interval graphs. In particular, we prove that for any $d \geq 2$, if $G$ is a $K_{1,2d+1}$-free interval graph, then $G$ is a unit $d$-interval graph. However, somehow surprisingly, under the same assumptions, $G$ is not always a \emph{disjoint} unit $d$-interval graph. This implies that the class of disjoint unit $d$-interval graphs is strictly included in the class of unit $d$-interval graphs. Finally, we study the relationships between the classes obtained under disjoint and non-disjoint $d$-intervals in the balanced case and show that the classes of disjoint balanced 2-intervals and balanced 2-intervals coincide, but this is no longer true for $d>2$.
Τύπος εγγράφου: Article
Conference object
Περιγραφή αρχείου: application/pdf
DOI: 10.48550/arxiv.2404.17872
DOI: 10.4230/lipics.mfcs.2024.12
Σύνδεσμος πρόσβασης: http://arxiv.org/abs/2404.17872
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.12
https://hal.science/hal-04698633v1
https://doi.org/10.4230/lipics.mfcs.2024.12
Rights: arXiv Non-Exclusive Distribution
CC BY
Αριθμός Καταχώρησης: edsair.doi.dedup.....f371ca4904f289d9551482d1e3e2994e
Βάση Δεδομένων: OpenAIRE