An additive property of almost periodic sets

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: An additive property of almost periodic sets
Συγγραφείς: Puchta, Jan-Christoph
Πηγή: Acta Mathematica Hungarica. 97:323-331
Publication Status: Preprint
Στοιχεία εκδότη: Springer Science and Business Media LLC, 2002.
Έτος έκδοσης: 2002
Θεματικοί όροι: Fourier series of arithmetical functions, mean-value problems, Mathematics - Number Theory, 11K70, extremal sets of integers, binary additive problems, Arithmetic functions, related numbers, inversion formulas, trigonometric polynomials, multiplicative arithmetical function, Fourier coefficients, Harmonic analysis and almost periodicity in probabilistic number theory, 01 natural sciences, theorem of Elliott-Daboussi, Applications of the Hardy-Littlewood method, circle method, almost periodic arithmetical functions, minor arcs, FOS: Mathematics, Number Theory (math.NT), conjecture of Brüdern, 0101 mathematics
Περιγραφή: We show that a set is almost periodic if and only if the associated exponential sum is concentrated in the minor arcs. Hence binary additive problems involving almost periodic sets can be solved using the circle method.
Τύπος εγγράφου: Article
Other literature type
Περιγραφή αρχείου: application/xml
Γλώσσα: English
ISSN: 1588-2632
0236-5294
DOI: 10.1023/a:1021613315705
DOI: 10.48550/arxiv.1105.1628
Σύνδεσμος πρόσβασης: http://arxiv.org/pdf/1105.1628
http://arxiv.org/abs/1105.1628
https://arxiv.org/abs/1105.1628
https://arxiv.org/pdf/1105.1628v1
http://ui.adsabs.harvard.edu/abs/2011arXiv1105.1628S/abstract
https://biblio.ugent.be/publication/596683
https://link.springer.com/article/10.1023%2FA%3A1021613315705
Rights: Springer Nature TDM
arXiv Non-Exclusive Distribution
Αριθμός Καταχώρησης: edsair.doi.dedup.....f11c223ffbc5a4705bb97ad73e7ec68c
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:15882632
02365294
DOI:10.1023/a:1021613315705