Academic Journal
An additive property of almost periodic sets
| Τίτλος: | An additive property of almost periodic sets |
|---|---|
| Συγγραφείς: | Puchta, Jan-Christoph |
| Πηγή: | Acta Mathematica Hungarica. 97:323-331 |
| Publication Status: | Preprint |
| Στοιχεία εκδότη: | Springer Science and Business Media LLC, 2002. |
| Έτος έκδοσης: | 2002 |
| Θεματικοί όροι: | Fourier series of arithmetical functions, mean-value problems, Mathematics - Number Theory, 11K70, extremal sets of integers, binary additive problems, Arithmetic functions, related numbers, inversion formulas, trigonometric polynomials, multiplicative arithmetical function, Fourier coefficients, Harmonic analysis and almost periodicity in probabilistic number theory, 01 natural sciences, theorem of Elliott-Daboussi, Applications of the Hardy-Littlewood method, circle method, almost periodic arithmetical functions, minor arcs, FOS: Mathematics, Number Theory (math.NT), conjecture of Brüdern, 0101 mathematics |
| Περιγραφή: | We show that a set is almost periodic if and only if the associated exponential sum is concentrated in the minor arcs. Hence binary additive problems involving almost periodic sets can be solved using the circle method. |
| Τύπος εγγράφου: | Article Other literature type |
| Περιγραφή αρχείου: | application/xml |
| Γλώσσα: | English |
| ISSN: | 1588-2632 0236-5294 |
| DOI: | 10.1023/a:1021613315705 |
| DOI: | 10.48550/arxiv.1105.1628 |
| Σύνδεσμος πρόσβασης: | http://arxiv.org/pdf/1105.1628 http://arxiv.org/abs/1105.1628 https://arxiv.org/abs/1105.1628 https://arxiv.org/pdf/1105.1628v1 http://ui.adsabs.harvard.edu/abs/2011arXiv1105.1628S/abstract https://biblio.ugent.be/publication/596683 https://link.springer.com/article/10.1023%2FA%3A1021613315705 |
| Rights: | Springer Nature TDM arXiv Non-Exclusive Distribution |
| Αριθμός Καταχώρησης: | edsair.doi.dedup.....f11c223ffbc5a4705bb97ad73e7ec68c |
| Βάση Δεδομένων: | OpenAIRE |
| ISSN: | 15882632 02365294 |
|---|---|
| DOI: | 10.1023/a:1021613315705 |