Academic Journal
Multi-Responsive Amphiphilic Hyperbranched Poly[(2-dimethyl aminoethyl methacrylate)-co-(benzyl methacrylate)]copolymers: Self-Assembly and Curcumin Encapsulation in Aqueous Media
| Τίτλος: | Multi-Responsive Amphiphilic Hyperbranched Poly[(2-dimethyl aminoethyl methacrylate)-co-(benzyl methacrylate)]copolymers: Self-Assembly and Curcumin Encapsulation in Aqueous Media |
|---|---|
| Συγγραφείς: | Foteini Ginosati, Dimitrios Vagenas, Angelica Maria Gerardos, Stergios Pispas |
| Συνεισφορές: | © 2025 by the authors. Licensee MDPI, Basel, Switzerland. |
| Πηγή: | Materials (Basel) |
| Στοιχεία εκδότη: | MDPI AG, 2025. |
| Έτος έκδοσης: | 2025 |
| Θεματικοί όροι: | Βιοιατρική μηχανική. Ηλεκτρονική. Ενοργάνιση, RAFT polymerization, Φασματοσκοπία, encapsulation, curcumin, self-assembly, Biomedical engineering. Electronics. Instrumentation, light scattering, Spectroscopy, Article, amphiphilic hyperbranched statistical copolymers |
| Περιγραφή: | In this study, we report the synthesis of amphiphilic hyperbranched poly[(2-dimethylaminoethyl methacrylate)-co-(benzyl methacrylate)] statistical copolymers with two different stoichiometric compositions using the reversible addition–fragmentation chain transfer polymerization (RAFT) technique. The selection of monomers was made to incorporate a pH and thermoresponsive polyelectrolyte (DMAEMA) component and a hydrophobic component (BzMA) to achieve amphiphilicity and study the effects of architecture and environmental factors on the behavior of the novel branched copolymers. Molecular characterization was performed through size exclusion chromatography (SEC) and spectroscopic characterization techniques (1H-NMR and FT-IR). The self-assembly behavior of the hyperbranched copolymers in aqueous media, in response to variations in pH, temperature, and ionic strength, was studied using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and fluorescence spectroscopy (FS). Finally, the efficacy of the two novel copolymers to encapsulate curcumin (CUR), a hydrophobic, polyphenolic drug with proven anti-inflammatory and fluorescence properties, was established. Its encapsulation was evaluated through DLS, UV–Vis, and fluorescence measurements, investigating the change of hydrodynamic radius of the produced mixed copolymer–CUR nanoparticles in each case and their fluorescence emission properties. |
| Τύπος εγγράφου: | Article Other literature type |
| Γλώσσα: | English |
| ISSN: | 1996-1944 |
| DOI: | 10.3390/ma18030513 |
| Σύνδεσμος πρόσβασης: | https://pubmed.ncbi.nlm.nih.gov/39942180 |
| Rights: | CC BY URL: https://creativecommons.org/licenses/by/4.0/deed.el |
| Αριθμός Καταχώρησης: | edsair.doi.dedup.....e57e7be16f8048e533b5a760359a7c94 |
| Βάση Δεδομένων: | OpenAIRE |
| ISSN: | 19961944 |
|---|---|
| DOI: | 10.3390/ma18030513 |