The Distribution of Totients: The distribution of totients

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: The Distribution of Totients: The distribution of totients
Συγγραφείς: Kevin Ford
Πηγή: Developments in Mathematics ISBN: 9781441950581
Publication Status: Preprint
Στοιχεία εκδότη: Springer US, 1998.
Έτος έκδοσης: 1998
Θεματικοί όροι: normal number of prime factors, sum of divisors function, prime \(k\)-tuples conjecture, Mathematics - Number Theory, multiplicities, Arithmetic functions, related numbers, inversion formulas, Sierpiński's conjecture, 0102 computer and information sciences, 01 natural sciences, Other results on the distribution of values or the characterization of arithmetic functions, Sierpinski's conjecture, Euler's function, totients, FOS: Mathematics, Asymptotic results on arithmetic functions, Number Theory (math.NT), 0101 mathematics, multiplicative arithmetic functions, Carmichael's conjecture
Περιγραφή: This paper is an announcement of many new results concerning the set of totients, i.e. the set of values taken by Euler’s ϕ \phi -function. The main functions studied are V ( x ) V(x) , the number of totients not exceeding x x , A ( m ) A(m) , the number of solutions of ϕ ( x ) = m \phi (x)=m (the “multiplicity” of m m ), and V k ( x ) V_{k}(x) , the number of m ≤ x m\le x with A ( m ) = k A(m)=k . The first of the main results of the paper is a determination of the true order of V ( x ) V(x) . It is also shown that for each k ≥ 1 k\ge 1 , if there is a totient with multiplicity k k , then V k ( x ) ≫ V ( x ) V_{k}(x) \gg V(x) . We further show that every multiplicity k ≥ 2 k\ge 2 is possible, settling an old conjecture of Sierpiński. An older conjecture of Carmichael states that no totient has multiplicity 1. This remains an open problem, but some progress can be reported. In particular, the results stated above imply that if there is one counterexample, then a positive proportion of all totients are counterexamples. Determining the order of V ( x ) V(x) and V k ( x ) V_{k}(x) also provides a description of the “normal” multiplicative structure of totients. This takes the form of bounds on the sizes of the prime factors of a pre-image of a typical totient. One corollary is that the normal number of prime factors of a totient ≤ x \le x is c log ⁡ log ⁡ x c\log \log x , where c ≈ 2.186 c\approx 2.186 . Lastly, similar results are proved for the set of values taken by a general multiplicative arithmetic function, such as the sum of divisors function, whose behavior is similar to that of Euler’s function.
Τύπος εγγράφου: Part of book or chapter of book
Article
Περιγραφή αρχείου: application/xml
ISSN: 1572-9303
1382-4090
DOI: 10.1007/978-1-4757-4507-8_8
DOI: 10.1023/a:1009761909132
DOI: 10.1090/s1079-6762-98-00043-2
DOI: 10.48550/arxiv.1104.3264
Σύνδεσμος πρόσβασης: http://arxiv.org/abs/1104.3264
https://zbmath.org/1149588
https://doi.org/10.1090/s1079-6762-98-00043-2
https://link.springer.com/article/10.1023/A:1009761909132
https://experts.illinois.edu/en/publications/the-distribution-of-totients
Rights: Springer Nature TDM
arXiv Non-Exclusive Distribution
URL: https://www.ams.org/publications/copyright-and-permissions
Αριθμός Καταχώρησης: edsair.doi.dedup.....bf7ad7e313f4afcef3f6aaebc218c6df
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:15729303
13824090
DOI:10.1007/978-1-4757-4507-8_8