Academic Journal
Sufficiency criteria for a class of convex functions connected with tangent function
| Τίτλος: | Sufficiency criteria for a class of convex functions connected with tangent function |
|---|---|
| Συγγραφείς: | Muhammad Ghaffar Khan, Sheza M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad |
| Πηγή: | AIMS Mathematics, Vol 9, Iss 7, Pp 18608-18624 (2024) |
| Στοιχεία εκδότη: | American Institute of Mathematical Sciences (AIMS), 2024. |
| Έτος έκδοσης: | 2024 |
| Θεματικοί όροι: | logarithmic coefficients, Artificial intelligence, Class (philosophy), Geometry, tangent function, Univalent Functions, Evolutionary biology, Convex Functions, Matrix Inequalities and Geometric Means, Mathematical analysis, 01 natural sciences, holomorphic convex functions, Convex function, QA1-939, FOS: Mathematics, convolution, 0101 mathematics, Geometric Function Theory, Biology, Tangent, Conformal Mapping, Applied Mathematics, Geometric Function Theory and Complex Analysis, Pure mathematics, krushkal inequality, Computer science, Nonlocal Partial Differential Equations and Boundary Value Problems, Regular polygon, Function (biology), Physical Sciences, Geometry and Topology, Mathematics, Hypergeometric Functions |
| Περιγραφή: | The research here was motivated by a number of recent studies on Hankel inequalities and sharp bounds. In this article, we define a new subclass of holomorphic convex functions that are related to tangent functions. We then derive geometric properties like the necessary and sufficient conditions, radius of convexity, growth, and distortion estimates for our defined function class. Furthermore, the sharp coefficient bounds, sharp Fekete-Szegö inequality, sharp 2nd order Hankel determinant, and Krushkal inequalities are given. Moreover, we calculate the sharp coefficient bounds, sharp Fekete-Szegö inequality, and sharp second-order Hankel determinant for the functions whose coefficients are logarithmic. |
| Τύπος εγγράφου: | Article Other literature type |
| ISSN: | 2473-6988 |
| DOI: | 10.3934/math.2024906 |
| DOI: | 10.60692/0zjz0-h6y46 |
| DOI: | 10.60692/cjxpy-nvj76 |
| Σύνδεσμος πρόσβασης: | https://doaj.org/article/93e7bbb4ae0e466f929993af6cecd510 |
| Αριθμός Καταχώρησης: | edsair.doi.dedup.....baa25d89ae0e1f9d05e52e174f99c075 |
| Βάση Δεδομένων: | OpenAIRE |
| ISSN: | 24736988 |
|---|---|
| DOI: | 10.3934/math.2024906 |