Academic Journal

Sufficiency criteria for a class of convex functions connected with tangent function

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Sufficiency criteria for a class of convex functions connected with tangent function
Συγγραφείς: Muhammad Ghaffar Khan, Sheza M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad
Πηγή: AIMS Mathematics, Vol 9, Iss 7, Pp 18608-18624 (2024)
Στοιχεία εκδότη: American Institute of Mathematical Sciences (AIMS), 2024.
Έτος έκδοσης: 2024
Θεματικοί όροι: logarithmic coefficients, Artificial intelligence, Class (philosophy), Geometry, tangent function, Univalent Functions, Evolutionary biology, Convex Functions, Matrix Inequalities and Geometric Means, Mathematical analysis, 01 natural sciences, holomorphic convex functions, Convex function, QA1-939, FOS: Mathematics, convolution, 0101 mathematics, Geometric Function Theory, Biology, Tangent, Conformal Mapping, Applied Mathematics, Geometric Function Theory and Complex Analysis, Pure mathematics, krushkal inequality, Computer science, Nonlocal Partial Differential Equations and Boundary Value Problems, Regular polygon, Function (biology), Physical Sciences, Geometry and Topology, Mathematics, Hypergeometric Functions
Περιγραφή: The research here was motivated by a number of recent studies on Hankel inequalities and sharp bounds. In this article, we define a new subclass of holomorphic convex functions that are related to tangent functions. We then derive geometric properties like the necessary and sufficient conditions, radius of convexity, growth, and distortion estimates for our defined function class. Furthermore, the sharp coefficient bounds, sharp Fekete-Szegö inequality, sharp 2nd order Hankel determinant, and Krushkal inequalities are given. Moreover, we calculate the sharp coefficient bounds, sharp Fekete-Szegö inequality, and sharp second-order Hankel determinant for the functions whose coefficients are logarithmic.
Τύπος εγγράφου: Article
Other literature type
ISSN: 2473-6988
DOI: 10.3934/math.2024906
DOI: 10.60692/0zjz0-h6y46
DOI: 10.60692/cjxpy-nvj76
Σύνδεσμος πρόσβασης: https://doaj.org/article/93e7bbb4ae0e466f929993af6cecd510
Αριθμός Καταχώρησης: edsair.doi.dedup.....baa25d89ae0e1f9d05e52e174f99c075
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:24736988
DOI:10.3934/math.2024906