Analysis of two thermoelastic problems with the Green–Lindsay model

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Analysis of two thermoelastic problems with the Green–Lindsay model
Συγγραφείς: Noelia Bazarra, José R. Fernández, Ramón Quintanilla
Συνεισφορές: Universitat Politècnica de Catalunya. Departament de Matemàtiques
Πηγή: Investigo. Repositorio Institucional de la Universidade de Vigo
Universidade de Vigo (UVigo)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Στοιχεία εκδότη: Springer Science and Business Media LLC, 2023.
Έτος έκδοσης: 2023
Θεματικοί όροι: Finite elements, Classificació AMS::74 Mechanics of deformable solids::74F Coupling of solid mechanics with other effects, 1206 Análisis Numérico, 01 natural sciences, Classificació AMS::65 Numerical analysis::65M Partial differential equations, A priori error estimates, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, initial value and time-dependent initial-boundary value problems, Discrete stability, Numerical simulations, Classificació AMS::65 Numerical analysis::65M Partial differential equations, initial value and time-dependent initial-boundary value problems, 0101 mathematics, Green–Lindsay, Dissipation mechanisms, Thermoelasticity, Termoelasticitat
Περιγραφή: In this paper, we analyze, from the numerical point of view, two thermo-elastic problems involving the Green–Lindsay theory. The coupling term is different for each case, involving second order or first order spatial derivatives, respectively. The variational formulation leads to a linear coupled system which is written in terms of the velocity and temperature speed. An existence and uniqueness results and the exponential energy decay for the problem with the stronger coupling are recalled. The polynomial energy decay for the weaker coupling is then proved but using the theory of linear semigroups. Then, a fully discrete approximation is introduced using the finite element method and an implicit scheme. A discrete stability property and a main a priori error estimates result are shown, from which we can derive the linear convergence of the approximations. Finally, some numerical simulations are presented to demonstrate the accuracy of the algorithm, the discrete energy decay and the dependence on the relaxation parameter.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/pdf
Γλώσσα: English
ISSN: 1807-0302
2238-3603
DOI: 10.1007/s40314-023-02335-5
Σύνδεσμος πρόσβασης: http://hdl.handle.net/11093/5281
https://link.springer.com/10.1007/s40314-023-02335-5
Rights: CC BY
Αριθμός Καταχώρησης: edsair.doi.dedup.....b9b95395c0d22eb97577d34f6ae0012b
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:18070302
22383603
DOI:10.1007/s40314-023-02335-5