Academic Journal

Bioacoustic fundamental frequency estimation: a cross-species dataset and deep learning baseline

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Bioacoustic fundamental frequency estimation: a cross-species dataset and deep learning baseline
Συγγραφείς: Best, Paul, Araya-Salas, Marcelo, Ekström, Axel, Freitas, Bárbara, Jensen, Frants, Kershenbaum, Arik, Lameira, Adriano, Lehmann, Kenna, Linhart, Pavel, Liu, Robert, Madhavan, Malavika, Markham, Andrew, Roch, Marie, Root-Gutteridge, Holly, Šálek, Martin, Smith-Vidaurre, Grace, Strandburg-Peshkin, Ariana, Warren, Megan, Wijers, Matthew, Marxer, Ricard
Συνεισφορές: Marxer, Ricard, Apollo - University of Cambridge Repository
Πηγή: Best, P, Araya-Salas, M, Ekström, A G, Freitas, B, Jensen, F H, Kershenbaum, A, Lameira, A R, Lehmann, K D S, Linhart, P, Liu, R C, Madhavan, M, Markham, A, Roch, M A, Root-Gutteridge, H, Šálek, M, Smith-Vidaurre, G, Strandburg-Peshkin, A, Warren, M R, Wijers, M & Marxer, R 2025, 'Bioacoustic fundamental frequency estimation : a cross-species dataset and deep learning baseline', Bioacoustics, vol. 34, no. 4, pp. 419-446. https://doi.org/10.1080/09524622.2025.2500380
Στοιχεία εκδότη: Informa UK Limited, 2025.
Έτος έκδοσης: 2025
Θεματικοί όροι: [INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE], [PHYS.MECA.BIOM] Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph], deep learning, cross-species dataset, vocalisation analysis, Fundamental frequency (F0), [PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph], [INFO.INFO-SD] Computer Science [cs]/Sound [cs.SD]
Περιγραφή: The fundamental frequency (F0) is a key parameter for characterising structures in vertebrate vocalisations, for instance defining vocal repertoires and their variations at different biological scales ( e.g population dialects, individual signatures). However, the task is too laborious to perform manually, and its automation is complex. Despite significant advancements in the fields of speech and music for automatic F0 estimation, similar progress in bioacoustics has been limited. To address this gap, we compile and publish a benchmark dataset of over 250,000 calls from 14 taxa, each paired with ground truth F0 values. These vocalisations range from infra-sounds to ultra-sounds, from high to low harmonicity, and some include non-linear phenomena. Testing different algorithms on these signals, we demonstrate the potential of neural networks for F0 estimation, even for taxa not seen in training, or when trained without labels. Also, to inform on the applicability of algorithms to analyse signals, we propose spectral measurements of F0 quality which correlate well with performance. While current performance results are not satisfying for all studied taxa, they suggest that deep learning could bring a more generic and reliable bioacoustic F0 tracker, helping the community to analyse vocalisations via their F0 contours.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/pdf
Γλώσσα: English
ISSN: 2165-0586
0952-4622
DOI: 10.1080/09524622.2025.2500380
DOI: 10.17863/cam.120283
Σύνδεσμος πρόσβασης: https://hal.science/hal-05265455v1
https://hal.science/hal-05265455v1/document
https://doi.org/10.1080/09524622.2025.2500380
http://www.scopus.com/inward/record.url?scp=105007437974&partnerID=8YFLogxK
https://pure.au.dk/portal/en/publications/ad803abb-444e-4d43-9e4c-0ec48eee60d7
https://doi.org/10.1080/09524622.2025.2500380
Rights: CC BY
Αριθμός Καταχώρησης: edsair.doi.dedup.....b5700024f7131a479636f0b254ce5a4c
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:21650586
09524622
DOI:10.1080/09524622.2025.2500380