Academic Journal

Data-Driven Continuation of Patterns and Their Bifurcations

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Data-Driven Continuation of Patterns and Their Bifurcations
Συγγραφείς: Wenjun Zhao, Samuel Maffa, Björn Sandstede
Πηγή: SIAM Journal on Applied Dynamical Systems. 24:1812-1850
Publication Status: Preprint
Στοιχεία εκδότη: Society for Industrial & Applied Mathematics (SIAM), 2025.
Έτος έκδοσης: 2025
Θεματικοί όροι: FOS: Mathematics, FOS: Physical sciences, Pattern Formation and Solitons (nlin.PS), Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Nonlinear Sciences - Pattern Formation and Solitons
Περιγραφή: Patterns and nonlinear waves, such as spots, stripes, and rotating spirals, arise prominently in many natural processes and in reaction-diffusion models. Our goal is to compute boundaries between parameter regions with different prevailing patterns and waves. We accomplish this by evolving randomized initial data to full patterns and evaluate feature functions, such as the number of connected components or their area distribution, on their sublevel sets. The resulting probability measure on the feature space, which we refer to as pattern statistics, can then be compared at different parameter values using the Wasserstein distance. We show that arclength predictor-corrector continuation can be used to trace out transition and bifurcation curves in parameter space by maximizing the distance of the pattern statistics. The utility of this approach is demonstrated through a range of examples involving homogeneous states, spots, stripes, and spiral waves.
Τύπος εγγράφου: Article
Γλώσσα: English
ISSN: 1536-0040
DOI: 10.1137/24m165644x
DOI: 10.48550/arxiv.2503.05736
Σύνδεσμος πρόσβασης: http://arxiv.org/abs/2503.05736
Rights: CC BY SA
Αριθμός Καταχώρησης: edsair.doi.dedup.....b1df2905db919915a6e2fef98db509f9
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:15360040
DOI:10.1137/24m165644x