Academic Journal

Breaking the Barrier of 2 for the Competitiveness of Longest Queue Drop

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Breaking the Barrier of 2 for the Competitiveness of Longest Queue Drop
Συγγραφείς: Antonios Antoniadis, Matthias Englert, Nicolaos Matsakis, Pavel Veselý
Συνεισφορές: Antonios Antoniadis and Matthias Englert and Nicolaos Matsakis and Pavel Veselý, Bansal, Nikhil, Merelli, Emanuela, Worrell, James
Πηγή: ACM Transactions on Algorithms. 20:1-29
Publication Status: Preprint
Στοιχεία εκδότη: Association for Computing Machinery (ACM), 2024.
Έτος έκδοσης: 2024
Θεματικοί όροι: FOS: Computer and information sciences, online algorithms, online scheduling, 0102 computer and information sciences, 02 engineering and technology, Theory of computation → Online algorithms, 01 natural sciences, QA76, Computer Science - Data Structures and Algorithms, 0202 electrical engineering, electronic engineering, information engineering, Data Structures and Algorithms (cs.DS), ddc:004, F.2.2, longest queue drop, buffer management
Περιγραφή: We consider the problem of managing the buffer of a shared-memory switch that transmits packets of unit value. A shared-memory switch consists of an input port, a number of output ports, and a buffer with a specific capacity. In each time step, an arbitrary number of packets arrive at the input port, each packet designated for one output port. Each packet is added to the queue of the respective output port. If the total number of packets exceeds the capacity of the buffer, some packets have to be irrevocably evicted. At the end of each time step, each output port transmits a packet in its queue, and the goal is to maximize the number of transmitted packets. The Longest Queue Drop ( LQD ) online algorithm accepts any arriving packet to the buffer. However, if this results in the buffer exceeding its memory capacity, then LQD drops a packet from whichever queue is currently the longest, breaking ties arbitrarily. The LQD algorithm was first introduced in 1991, and has been known to be \(2\) -competitive since 2001. Although LQD remains the best known online algorithm for the problem and is of practical interest, determining its true competitiveness is a long-standing open problem. We show that LQD is 1.6918-competitive, establishing the first \((2-\varepsilon)\) upper bound for the competitive ratio of LQD for a constant \(\varepsilon{\,\gt\,}0\) .
Τύπος εγγράφου: Article
Conference object
Other literature type
Περιγραφή αρχείου: application/pdf
Γλώσσα: English
ISSN: 1549-6333
1549-6325
DOI: 10.1145/3676887
DOI: 10.48550/arxiv.2012.03906
DOI: 10.4230/lipics.icalp.2021.17
Σύνδεσμος πρόσβασης: http://arxiv.org/abs/2012.03906
http://wrap.warwick.ac.uk/154061/1/WRAP-breaking-barrier-2-competitiveness-longest-queue-drop-Englert-2021.pdf
https://research.utwente.nl/en/publications/39259b40-5ba5-487a-acd7-6302d453b99d
https://doi.org/10.4230/LIPIcs.ICALP.2021.17
https://drops.dagstuhl.de/opus/volltexte/2021/14086/pdf/LIPIcs-ICALP-2021-17.pdf/
https://drops.dagstuhl.de/opus/volltexte/2021/14086/
https://dblp.uni-trier.de/db/journals/corr/corr2012.html#abs-2012-03906
https://arxiv.org/abs/2012.03906
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.17
Rights: arXiv Non-Exclusive Distribution
CC BY
URL: https://www.acm.org/publications/policies/copyright_policy#Background
Αριθμός Καταχώρησης: edsair.doi.dedup.....b02ef2dab6a32a9ae33f54d23f81494e
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:15496333
15496325
DOI:10.1145/3676887