Academic Journal

Linkage of Pfister forms over ℂ(x1,…,xn)

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Linkage of Pfister forms over ℂ(x1,…,xn)
Συγγραφείς: Chapman, Adam, Tignol, Jean-Pierre
Συνεισφορές: UCL - SST/ICTM/INMA - Pôle en ingénierie mathématique
Πηγή: Annals of K-theory, Vol. 4, no.3, p. 521-524 (2019)
Ann. K-Theory 4, no. 3 (2019), 521-524
Publication Status: Preprint
Στοιχεία εκδότη: Mathematical Sciences Publishers, 2019.
Έτος έκδοσης: 2019
Θεματικοί όροι: rational function fields, 11E81, 11E04, 19D45, 11E81, 0103 physical sciences, 11E04, FOS: Mathematics, 0101 mathematics, linkage, Mathematics - Commutative Algebra, Commutative Algebra (math.AC), 01 natural sciences, quadratic forms, 19D45
Περιγραφή: In this note, we prove the existence of a set of $n$-fold Pfister forms of cardinality $2^n$ over $\mathbb{C}(x_1,\dots,x_n)$ which do not share a common $(n-1)$-fold factor. This gives a negative answer to a question raised by Becher. The main tools are the existence of the dyadic valuation on the complex numbers and recent results on symmetric bilinear over fields of characteristic 2.
Τύπος εγγράφου: Article
Other literature type
Περιγραφή αρχείου: application/pdf
Γλώσσα: English
ISSN: 2379-1691
2379-1683
DOI: 10.2140/akt.2019.4.521
DOI: 10.48550/arxiv.1903.02776
Σύνδεσμος πρόσβασης: http://arxiv.org/pdf/1903.02776
http://arxiv.org/abs/1903.02776
https://ui.adsabs.harvard.edu/abs/2019arXiv190302776C/abstract
https://arxiv.org/pdf/1903.02776
https://arxiv.org/abs/1903.02776
https://projecteuclid.org/journals/annals-of-k-theory/volume-4/issue-3/Linkage-of-Pfister-forms-over-mathbb-Cx_1ldotsx_n/10.2140/akt.2019.4.521.full
https://dial.uclouvain.be/pr/boreal/object/boreal:224032
https://msp.org/akt/2019/4-3/p06.xhtml
https://msp.org/akt/2019/4-3/akt-v4-n3-p06-s.pdf
https://hdl.handle.net/2078.1/224032
https://projecteuclid.org/euclid.akt/1578020478
Rights: arXiv Non-Exclusive Distribution
Αριθμός Καταχώρησης: edsair.doi.dedup.....9b16a21a6b9c3c4ff41b75a40d3a0b10
Βάση Δεδομένων: OpenAIRE