Academic Journal

Magnitude and Holmes–Thompson intrinsic volumes of convex bodies: Magnitude and Holmes-Thompson intrinsic volumes of convex bodies

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Magnitude and Holmes–Thompson intrinsic volumes of convex bodies: Magnitude and Holmes-Thompson intrinsic volumes of convex bodies
Συγγραφείς: Meckes, Mark W.
Πηγή: Canadian Mathematical Bulletin
Publication Status: Preprint
Στοιχεία εκδότη: Canadian Mathematical Society, 2022.
Έτος έκδοσης: 2022
Θεματικοί όροι: Random convex sets and integral geometry (aspects of convex geometry), Metric Geometry (math.MG), Mahler's conjecture, Convex sets in \(n\) dimensions (including convex hypersurfaces), Metric geometry, 01 natural sciences, Length, area, volume and convex sets (aspects of convex geometry), Functional Analysis (math.FA), Mathematics - Functional Analysis, Geometry and structure of normed linear spaces, Sudakov minoration, Mathematics - Metric Geometry, FOS: Mathematics, magnitude, 0101 mathematics, Holmes-Thompson intrinsic volumes
Περιγραφή: Magnitude is a numerical invariant of compact metric spaces, originally inspired by category theory and now known to be related to myriad other geometric quantities. Generalizing earlier results in $\ell _1^n$ and Euclidean space, we prove an upper bound for the magnitude of a convex body in a hypermetric normed space in terms of its Holmes–Thompson intrinsic volumes. As applications of this bound, we give short new proofs of Mahler’s conjecture in the case of a zonoid and Sudakov’s minoration inequality.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml
Γλώσσα: English
ISSN: 1496-4287
0008-4395
DOI: 10.4153/s0008439522000728
DOI: 10.48550/arxiv.2206.02600
Σύνδεσμος πρόσβασης: http://arxiv.org/abs/2206.02600
https://zbmath.org/7741836
https://doi.org/10.4153/s0008439522000728
Rights: CC BY
arXiv Non-Exclusive Distribution
Αριθμός Καταχώρησης: edsair.doi.dedup.....93cacf5b56d0e4ecd6e4b027fc48977e
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:14964287
00084395
DOI:10.4153/s0008439522000728