Academic Journal

Hilbert points in Hardy spaces

Bibliographic Details
Title: Hilbert points in Hardy spaces
Authors: Brevig, Ole Fredrik, Ortega-Cerdà, Joaquim, Seip, Kristian
Source: Articles publicats en revistes (Matemàtiques i Informàtica)
Dipòsit Digital de la UB
instname
Publication Status: Preprint
Publisher Information: American Mathematical Society (AMS), 2023.
Publication Year: 2023
Subject Terms: Hardy spaces, Mathematics - Complex Variables, Funcions de variables complexes, Espais de Hardy, 0211 other engineering and technologies, Anàlisi harmònica, 02 engineering and technology, 01 natural sciences, Functions of complex variables, Functional Analysis (math.FA), Harmonic analysis, Mathematics - Functional Analysis, Inequalities (Mathematics), Mathematics - Classical Analysis and ODEs, H-espaces, H-espais, Classical Analysis and ODEs (math.CA), FOS: Mathematics, 0101 mathematics, Complex Variables (math.CV), Desigualtats (Matemàtica)
Description: A Hilbert point in H p ( T d ) H^p(\mathbb {T}^d) , for d ≥ 1 d\geq 1 and 1 ≤ p ≤ ∞ 1\leq p \leq \infty , is a nontrivial function φ \varphi in H p ( T d ) H^p(\mathbb {T}^d) such that ‖ φ ‖ H p ( T d ) ≤ ‖ φ + f ‖ H p ( T d ) \| \varphi \|_{H^p(\mathbb {T}^d)} \leq \|\varphi + f\|_{H^p(\mathbb {T}^d)} whenever f f is in H p ( T d ) H^p(\mathbb {T}^d) and orthogonal to φ \varphi in the usual L 2 L^2 sense. When p ≠ 2 p\neq 2 , φ \varphi is a Hilbert point in H p ( T ) H^p(\mathbb {T}) if and only if φ \varphi is a nonzero multiple of an inner function. An inner function on T d \mathbb {T}^d is a Hilbert point in any of the spaces H p ( T d ) H^p(\mathbb {T}^d) , but there are other Hilbert points as well when d ≥ 2 d\geq 2 . The case of 1 1 -homogeneous polynomials is studied in depth and, as a byproduct, a new proof is given for the sharp Khinchin inequality for Steinhaus variables in the range 2 > p > ∞ 2>p>\infty . Briefly, the dynamics of a certain nonlinear projection operator is treated. This operator characterizes Hilbert points as its fixed points. An example is exhibited of a function φ \varphi that is a Hilbert point in H p ( T 3 ) H^p(\mathbb {T}^3) for p = 2 , 4 p=2, 4 , but not for any other p p ; this is verified rigorously for p > 4 p>4 but only numerically for 1 ≤ p > 4 1\leq p>4 .
Document Type: Article
File Description: application/pdf
Language: English
ISSN: 1547-7371
1061-0022
DOI: 10.1090/spmj/1760
DOI: 10.48550/arxiv.2106.07532
Access URL: http://arxiv.org/abs/2106.07532
https://hdl.handle.net/2445/200873
http://hdl.handle.net/10852/93947
http://hdl.handle.net/2445/200873
Rights: arXiv Non-Exclusive Distribution
URL: https://www.ams.org/publications/copyright-and-permissions
Accession Number: edsair.doi.dedup.....8dfb789408e049356eb4d0daa1b4d4e5
Database: OpenAIRE
Description
ISSN:15477371
10610022
DOI:10.1090/spmj/1760