A fast algorithm for computing irreducible triangulations of closed surfaces in Ed: A fast algorithm for computing irreducible triangulations of closed surfaces in \(\mathbb{E}^d\)

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: A fast algorithm for computing irreducible triangulations of closed surfaces in Ed: A fast algorithm for computing irreducible triangulations of closed surfaces in \(\mathbb{E}^d\)
Συγγραφείς: Suneeta Ramaswami, Marcelo Siqueira
Πηγή: Computational Geometry. 68:327-357
Publication Status: Preprint
Στοιχεία εκδότη: Elsevier BV, 2018.
Έτος έκδοσης: 2018
Θεματικοί όροι: Computational Geometry (cs.CG), FOS: Computer and information sciences, Geometric Topology (math.GT), 0102 computer and information sciences, 7. Clean energy, 01 natural sciences, Planar graphs, geometric and topological aspects of graph theory, Mathematics - Geometric Topology, 13. Climate action, Numerical aspects of computer graphics, image analysis, and computational geometry, Graph theory (including graph drawing) in computer science, 05C10, 68U05, Computer Science - Data Structures and Algorithms, FOS: Mathematics, irreducible triangulations, Computer Science - Computational Geometry, Data Structures and Algorithms (cs.DS), 0101 mathematics, edge contractions
Περιγραφή: We give a fast algorithm for computing an irreducible triangulation $T^\prime$ of an oriented, connected, boundaryless, and compact surface $S$ in $E^d$ from any given triangulation $T$ of $S$. If the genus $g$ of $S$ is positive, then our algorithm takes $O(g^2+gn)$ time to obtain $T^\prime$, where $n$ is the number of triangles of $T$. Otherwise, $T^\prime$ is obtained in linear time in $n$. While the latter upper bound is optimal, the former upper bound improves upon the currently best known upper bound by a $(\lg n / g)$ factor. In both cases, the memory space required by our algorithm is in $Θ(n)$.
52 pages, a shorter version of this Technical Report is about to be submitted to Elsevier Journal Computational Geometry: Theory and Applications
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml
Γλώσσα: English
ISSN: 0925-7721
DOI: 10.1016/j.comgeo.2017.05.007
DOI: 10.48550/arxiv.1409.6015
Σύνδεσμος πρόσβασης: https://www.sciencedirect.com/science/article/am/pii/S0925772117300408
http://arxiv.org/abs/1409.6015
https://zbmath.org/6840495
https://doi.org/10.1016/j.comgeo.2017.05.007
https://dblp.uni-trier.de/db/journals/corr/corr1409.html#RamaswamiS14
https://www.sciencedirect.com/science/article/pii/S0925772117300408
https://www.researchwithrutgers.com/en/publications/a-fast-algorithm-for-computing-irreducible-triangulations-of-clos
https://ui.adsabs.harvard.edu/abs/2014arXiv1409.6015R/abstract
https://www.researchwithnj.com/en/publications/a-fast-algorithm-for-computing-irreducible-triangulations-of-clos
Rights: Elsevier Non-Commercial
arXiv Non-Exclusive Distribution
Αριθμός Καταχώρησης: edsair.doi.dedup.....61b10c5a7aed33d8da49c88a629fe9bf
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:09257721
DOI:10.1016/j.comgeo.2017.05.007