Distributions and measures on the boundary of a tree

Bibliographic Details
Title: Distributions and measures on the boundary of a tree
Authors: Flavia Colonna, Joel M. Cohen, David Singman
Source: Journal of Mathematical Analysis and Applications. 293:89-107
Publisher Information: Elsevier BV, 2004.
Publication Year: 2004
Subject Terms: Distributions and ultradistributions as boundary values of analytic functions, space of measures, ultrametric spaces, Applied Mathematics, Spaces of measures, convergence of measures, boundary behavior of polyharmonic functions, Measures, Biharmonic and polyharmonic equations and functions in higher dimensions, 01 natural sciences, Trees, space of distributions, Distributions, 0101 mathematics, Boundary behavior of harmonic functions in higher dimensions, Analysis
Description: The authors study some classes of distributions, relating them to one another and to the space of Borel measures. One main result rests on a property introduced, namely ``absolute summability'' for distributions: a distribution \(\mu\) on \(\Omega\) is called absolutely summable if for any countable collection \((I_n)\) of pairwise disjoint intervals, \(\sum\mu(I_n)\) is absolutely convergent. Then it is proved that the space of measures is identical to the space of distributions which are absolutely summable.
Document Type: Article
File Description: application/xml
Language: English
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2003.12.015
Access URL: https://zbmath.org/2082131
https://doi.org/10.1016/j.jmaa.2003.12.015
https://core.ac.uk/display/81145133
http://math.gmu.edu/%7Edsingman/measure.pdf
http://www.sciencedirect.com/science/article/pii/S0022247X04000241
https://www.sciencedirect.com/science/article/pii/S0022247X04000241
Rights: Elsevier Non-Commercial
Accession Number: edsair.doi.dedup.....3f47f608215d66b037fe9e2f7cea596c
Database: OpenAIRE
Description
ISSN:0022247X
DOI:10.1016/j.jmaa.2003.12.015