A reduced-dimension method for unknown Crank-Nicolson finite element solution coefficient vectors of elastic wave equation with singular source term

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: A reduced-dimension method for unknown Crank-Nicolson finite element solution coefficient vectors of elastic wave equation with singular source term
Συγγραφείς: Luru Jing, Mingfu Feng, Yuejie Li, Fei Teng, Zhendong Luo
Πηγή: Journal of Mathematical Analysis and Applications. 540:128629
Στοιχεία εκδότη: Elsevier BV, 2024.
Έτος έκδοσης: 2024
Θεματικοί όροι: convergence, Linear elasticity with initial stresses, Finite element methods applied to problems in solid mechanics, existence, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, stability, elastic wave equation, Crank-Nicolson finite element method, Finite difference methods applied to problems in solid mechanics, Error bounds for initial value and initial-boundary value problems involving PDEs, proper orthogonal decomposition, reduced-dimension extrapolated Crank-Nicolson finite element method, Finite difference methods for initial value and initial-boundary value problems involving PDEs, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs, PDEs in connection with mechanics of deformable solids
Περιγραφή: zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml
Γλώσσα: English
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2024.128629
Rights: Elsevier TDM
Αριθμός Καταχώρησης: edsair.doi.dedup.....3c9030c5dab859d2e70c23cf1e48db2a
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:0022247X
DOI:10.1016/j.jmaa.2024.128629