Deep transformer-based personalized dosimetry from SPECT/CT images: a hybrid approach for [177Lu]Lu-DOTATATE radiopharmaceutical therapy: a hybrid approach for [177Lu]Lu-DOTATATE radiopharmaceutical therapy

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Deep transformer-based personalized dosimetry from SPECT/CT images: a hybrid approach for [177Lu]Lu-DOTATATE radiopharmaceutical therapy: a hybrid approach for [177Lu]Lu-DOTATATE radiopharmaceutical therapy
Συγγραφείς: Mansouri, Zahra, Salimi, Yazdan, Akhavanallaf, Azadeh, Shiri Lord, Isaac, Andrade Teixeira, Eliluane Perazio, Hou, Xinchi, Beauregard, Jean-Mathieu, Rahmim, Arman, Zaidi, Habib
Πηγή: Eur J Nucl Med Mol Imaging
European Journal of Nuclear Medicine and Molecular Imaging
Στοιχεία εκδότη: Springer Science and Business Media LLC, 2024.
Έτος έκδοσης: 2024
Θεματικοί όροι: Male, Single Photon Emission Computed Tomography Computed Tomography / methods, Single Photon Emission Computed Tomography Computed Tomography, Image Processing, [Lu]Lu-DOTATATE, [177Lu]Lu-DOTATATE, Radionuclide therapy, Octreotide, Radiopharmaceuticals/therapeutic use, Neuroendocrine Tumors/radiotherapy, Neuroendocrine Tumors / radiotherapy, Deep Learning, Radiometry / methods, Radiation dosimetry, Computer-Assisted/methods, Radiopharmaceuticals / therapeutic use, Organometallic Compounds, Image Processing, Computer-Assisted, Humans, Octreotide/analogs & derivatives, Radiometry/methods, Precision Medicine, Radiometry, Monte Carlo simulation, 616.0757, Octreotide / therapeutic use, Deep learning, Precision Medicine/methods, Neuroendocrine Tumors / diagnostic imaging, 3. Good health, Neuroendocrine Tumors, Single Photon Emission Computed Tomography Computed Tomography/methods, Image Processing, Computer-Assisted / methods, Organometallic Compounds / therapeutic use, Octreotide / analogs & derivatives, Organometallic Compounds/therapeutic use, Original Article, Female, Precision Medicine / methods, Radiopharmaceuticals, Monte Carlo Method
Περιγραφή: PurposeAccurate dosimetry is critical for ensuring the safety and efficacy of radiopharmaceutical therapies. In current clinical dosimetry practice, MIRD formalisms are widely employed. However, with the rapid advancement of deep learning (DL) algorithms, there has been an increasing interest in leveraging the calculation speed and automation capabilities for different tasks. We aimed to develop a hybrid transformer-based deep learning (DL) model that incorporates a multiple voxelS-value (MSV) approach for voxel-level dosimetry in [177Lu]Lu-DOTATATE therapy. The goal was to enhance the performance of the model to achieve accuracy levels closely aligned with Monte Carlo (MC) simulations, considered as the standard of reference. We extended our analysis to include MIRD formalisms (SSV and MSV), thereby conducting a comprehensive dosimetry study.MethodsWe used a dataset consisting of 22 patients undergoing up to 4 cycles of [177Lu]Lu-DOTATATE therapy. MC simulations were used to generate reference absorbed dose maps. In addition, MIRD formalism approaches, namely, singleS-value (SSV) and MSV techniques, were performed. A UNEt TRansformer (UNETR) DL architecture was trained using five-fold cross-validation to generate MC-based dose maps. Co-registered CT images were fed into the network as input, whereas the difference between MC and MSV (MC-MSV) was set as output. DL results are then integrated to MSV to revive the MC dose maps. Finally, the dose maps generated by MSV, SSV, and DL were quantitatively compared to the MC reference at both voxel level and organ level (organs at risk and lesions).ResultsThe DL approach showed slightly better performance (voxel relative absolute error (RAE) = 5.28 ± 1.32) compared to MSV (voxel RAE = 5.54 ± 1.4) and outperformed SSV (voxel RAE = 7.8 ± 3.02). Gamma analysis pass rates were 99.0 ± 1.2%, 98.8 ± 1.3%, and 98.7 ± 1.52% for DL, MSV, and SSV approaches, respectively. The computational time for MC was the highest (~2 days for a single-bed SPECT study) compared to MSV, SSV, and DL, whereas the DL-based approach outperformed the other approaches in terms of time efficiency (3 s for a single-bed SPECT). Organ-wise analysis showed absolute percent errors of 1.44 ± 3.05%, 1.18 ± 2.65%, and 1.15 ± 2.5% for SSV, MSV, and DL approaches, respectively, in lesion-absorbed doses.ConclusionA hybrid transformer-based deep learning model was developed for fast and accurate dose map generation, outperforming the MIRD approaches, specifically in heterogenous regions. The model achieved accuracy close to MC gold standard and has potential for clinical implementation for use on large-scale datasets.
Τύπος εγγράφου: Article
Other literature type
Περιγραφή αρχείου: application/pdf
Γλώσσα: English
ISSN: 1619-7089
1619-7070
DOI: 10.1007/s00259-024-06618-9
Σύνδεσμος πρόσβασης: https://pubmed.ncbi.nlm.nih.gov/38267686
https://research.rug.nl/en/publications/0c5bb404-8ce2-43d0-98b5-265d7435d8f6
https://hdl.handle.net/11370/0c5bb404-8ce2-43d0-98b5-265d7435d8f6
https://doi.org/10.1007/s00259-024-06618-9
https://archive-ouverte.unige.ch/unige:176796
https://doi.org/10.1007/s00259-024-06618-9
https://portal.findresearcher.sdu.dk/da/publications/5586451c-fbc7-471d-96b4-81628f1a26b2
https://doi.org/10.1007/s00259-024-06618-9
Rights: CC BY
Αριθμός Καταχώρησης: edsair.doi.dedup.....309b05241494c355b0cc8b22f6e5f87f
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:16197089
16197070
DOI:10.1007/s00259-024-06618-9