Academic Journal

Statistics Based Models for the Dynamics of Chernivtsi Children Disease

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Statistics Based Models for the Dynamics of Chernivtsi Children Disease
Συγγραφείς: Nesteruk, Igor G.
Συνεισφορές: ELAKPI, The author thank Prof. Dirk Langemann (Techniche Universitaet Braunschweig) and Prof. Juergen Prestin (Universitaet zu Luebeck) for their support and for very useful discussions of the results. The study was supported by Horizon-2020 project AMMODIT
Πηγή: Наукові вісті Національного технічного університету України "Київський політехнічний інститут", Iss 5, Pp 26-34 (2017)
Наукові вісті КПІ; № 5 (2017): ; 26-34
Научные вести КПИ; № 5 (2017): ; 26-34
Research Bulletin of the National Technical University of Ukraine "Kyiv Politechnic Institute"; № 5 (2017): Engineering; 26-34
Στοιχεία εκδότη: Kyiv Politechnic Institute, 2017.
Έτος έκδοσης: 2017
Θεματικοί όροι: SIR-модель, 0301 basic medicine, Parameter identification, Statistical methods, Science, TP1-1185, Информационные технологии, системный анализ и управление, 01 natural sciences, Mathematical modeling of infection diseases, визначення моделі, модели загрязнения, математичне моделювання інфекційних хвороб, 03 medical and health sciences, 0103 physical sciences, математическое моделирование инфекционных болезней, Model identification, SIR-model, Contamination models, статистические методы, статистичні методи, моделі забруднення, Chemical technology, 3. Good health, Information technology, system analysis and guidance, Інформаційні технології, системний аналіз та керування, Определение модели, Идентификация параметров, Статистические методы, Математическое моделирование инфекционных болезней, Модели загрязнения, определение модели, ідентифікація параметрів, идентификация параметров, Визначення моделі, Ідентифікація параметрів, Статистичні методи, Математичне моделювання інфекційних хвороб, Моделі забруднення
Περιγραφή: Background. Simple mathematical models of contamination and SIR-model of spreading an infection were used to simulate the time dynamics of the unknown before children disease, which occurred in Chernivtsi (Ukraine). The cause of many cases of alopecia, which began in this city in August 1988 is still not fully clarified. According to the official report of the governmental commission, the last new cases occurred in the middle of November 1988, and the reason of the illness was reported as chemical exogenous intoxication. Later this illness became the name “Chernivtsi chemical disease”. Nevertheless, the significantly increased number of new cases of the local alopecia was registered almost three years and is still not clarified. Objective. The comparison of two different versions of the disease: chemical exogenous intoxication and infection. Identification of the parameters of mathematical models and prediction of the disease development. Methods. Analytical solutions of the contamination models and SIR-model for an epidemic are obtained. The optimal values of parameters with the use of linear regression were found. Results. The optimal values of the models parameters with the use of statistical approach were identified. The calculations showed that the infectious version of the disease is more reliable in comparison with the popular contamination one. The possible date of the epidemic beginning was estimated. Conclusions. The optimal parameters of SIR-model allow calculating the realistic number of victims and other characteristics of possible epidemic. They also show that increased number of cases of local alopecia could be a part of the same epidemic as “Chernivtsi chemical disease”.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/pdf
ISSN: 2519-8890
1810-0546
DOI: 10.20535/1810-0546.2017.5.108577
Σύνδεσμος πρόσβασης: http://bulletin.kpi.ua/article/download/108577/pdf_254
https://doaj.org/article/5cd05edeabc34836a83a5e90dd8a5990
http://bulletin.kpi.ua/article/view/108577/pdf_254
https://core.ac.uk/display/120230312
http://bulletin.kpi.ua/article/view/108577
https://ela.kpi.ua/handle/123456789/25387
http://bulletin.kpi.ua/article/view/108577
Rights: CC BY
Αριθμός Καταχώρησης: edsair.doi.dedup.....0a2cfdbcf1f2dcbebc3d4c856d3ccf9b
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:25198890
18100546
DOI:10.20535/1810-0546.2017.5.108577