Academic Journal

Нетривиальные периодические решения уравнения sin-Гордон

Bibliographic Details
Title: Нетривиальные периодические решения уравнения sin-Гордон
Authors: Rudakov, I.A.
Source: Международный научный журнал "Современные информационные технологии и ИТ-образование". 14
Publisher Information: Internet Media League, 2018.
Publication Year: 2018
Subject Terms: critical points of the functional, variation method, вариационный метод, критические точки функционала, Wave equation, периодические решения, periodic solutions, Волновое уравнение, теорема о перевале, mountain pass theorem
Description: В работе исследуется задача о периодических по времени решениях уравнения sin-Гордон с граничными условиями Неймана и Дирихле на отрезке. Новизна работы состоит в том, что в предшествующих работах существование периодических решений уравнения sin-Гордон на отрезке было доказано для случая граничных условий Дирихле и третьего рода. При исследовании уравнения применяется вариационный метод. Периодическое решение задачи находится как критическая точка функционала энергии. Для доказательства существования критической точки функционал ограничивается на конечномерные подпространства и применяется разновидность теоремы о “перевале”, позволяющая найти седловые стационарные точки. Используя особенности спектра дифференциального оператора и нелинейного слагаемого в этих подпространствах найдены зацепляющиеся поверхности, удовлетворяющие условиям теоремы о “перевале”. Для осуществления предельного перехода, когда размерность подпространств стремится к бесконечности, доказаны равномерные оценки последовательности функций, являющихся стационарными точками функционала на этих подпространствах. Предельный переход использует метод компактности. Доказательство гладкости обобщенного решения проводится с помощью рядов Фурье. Для доказательства сходимости рядов Фурье и их производных исследуются собственные значения дифференциального оператора, соответствующего линейной части уравнения. In this paper, we study the problem of time-periodic solutions of the sin-Gordon equation with Neumann and Dirichlet boundary conditions on an interval. The novelty of the paper lies in the fact that in previous papers the existence of periodic solutions of the sin-Gordon equation on an interval was proved for the case of Dirichlet and third kind boundary conditions. In the study of the equation, a variational method is used. Periodic solution of the problem is found as a critical point of the energy functional. To prove the existence of a critical point, the functional is limited to finite-dimensional subspaces and a kind of “pass” theorem is used, which allows finding saddle stationary points. Using the features of the spectrum of the differential operator and the nonlinear term in these subspaces, meshing surfaces are found that satisfy the conditions of the “pass” theorem. To implement the passage to the limit, when the dimension of the subspaces tends to infinity, we prove uniform estimates for the sequence of functions that are stationary points of the functional on these subspaces. The passage to the limit uses the compactness method. The proof of the smoothness of the generalized solution is carried out with the help of Fourier series. To prove the convergence of the Fourier series and their derivatives, we study the eigenvalues of the differential operator corresponding to the linear part of the equation.
Document Type: Article
Language: Russian
ISSN: 2411-1473
DOI: 10.25559/sitito.14.201803.639-646
Accession Number: edsair.doi...........5ecc1b3d4d0e88a2a9188e772e5878ce
Database: OpenAIRE
Description
ISSN:24111473
DOI:10.25559/sitito.14.201803.639-646