Academic Journal

ДРОБНО-СТЕПЕННЫЕ СПЕКТРЫ MULTISCROLL-СИСТЕМ С ХАОТИЧЕСКОЙ ДИНАМИКОЙ: FRACTION POWER SPECTRUMS OF THE MULTISCROLL CHAOTIC SYSTEM

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: ДРОБНО-СТЕПЕННЫЕ СПЕКТРЫ MULTISCROLL-СИСТЕМ С ХАОТИЧЕСКОЙ ДИНАМИКОЙ: FRACTION POWER SPECTRUMS OF THE MULTISCROLL CHAOTIC SYSTEM
Πηγή: Vestnik of Volga State University of Technology. Series Radio Engineering and Infocommunication Systems.
Στοιχεία εκδότη: Volga State University of Technology, 2019.
Έτος έκδοσης: 2019
Θεματικοί όροι: негармонические спектры, dynamic chaos, non-harmonic spectrum, генераторы хаоса, динамический хаос, chaos generator
Περιγραφή: Рассмотрены негармонические спектры нелинейной multiscrollсистемы с кусочнолинейной ступенчатой нелинейностью. Эти спектры получены на основе представления реализаций сигналов в виде импульсных случайных процессов. Приведены гистограммы параметров негармонического представления и двухпараметрические спектры сигналов. Выполнена классификация спектров в соответствии с авторской методикой. Определены возможности по различению типов сигналов multiscroll систем. Introduction. Models of nonlinear systems with a chaotic dynamics describe the electronic circuits of signal generators with a complex structure. Dynamic systems such as Chua, DmitrievKislov, Van der Pol, Duffing and AnischenkoAstakhov have been thoroughly studied by scientists. In the paper, it is proposed to use methods of nonharmonic spectral analysis of multiscroll systems based on their decomposition over monotonic intervals in the basis of nonharmonic fractionalpower functions of time. The aim of the research. The aim of the research is to carry out diagnostics of nonlinear multimode multiscroll (multilobe) systems with regular and chaotic dynamics by means of the generalized method of nonharmonic spectral analysis. Solution methods. A generalized model of signals of nonlinear multiscroll systems with chaotic dynamics is represented as a sequence of consecutive pulses. Nonharmonic spectral analysis of the signals of nonlinear radioelectronic systems was carried out by decomposing the signals, presented in the form of pulsed random processes, according to the basis of fraction power functions of time that is adequate for systems with chaotic dynamics. Math modeling. The spectra, presented in the paper, can be considered as distributed and localized. These spectra exhibit fuzzy spectral lines, in contrast to localized spectra. Peak amplitude values of signals are relatively rare. Analysis of simulation results. Analysis of the multiscroll system signals with the use of the proposed approach showed that their fraction power spectra are fairly well localized by decomposition parameters, that indicates the adequacy of the applied basis to this system. Conclusions. Nonharmonic spectral analysis based on representations of nonlinear systems signals in the form of pulsed random processes with fraction power approximation of the pulses envelope can be an additionally applied to support harmonic spectral analysis. Paper presents the relation of local formations in the obtained fraction power spectra of nonlinear dynamic systems of the multiscroll type with the values of the system parameters and the type of regular or chaotic mode that dominates in the system. Fraction power spectra of multiscroll systems with dynamic chaos are classified as distributed and localized. The relation of the parameters of fraction power expansions of signals with the dynamics of systems serve the basis for diagnosing nonlinear devices and systems with dynamic chaos with a stepwise piecewise linear characteristic of a nonlinear element according to the signals they generate.
Τύπος εγγράφου: Article
Γλώσσα: Russian
ISSN: 2306-2819
DOI: 10.25686/2306-2819.2019.2.37
Αριθμός Καταχώρησης: edsair.doi...........200fe55feb263c3cb71163f2b29c6576
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:23062819
DOI:10.25686/2306-2819.2019.2.37