the fatou and julia sets of multivalued analytic functions: The Fatou and Julia sets of multivalued analytical functions

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: the fatou and julia sets of multivalued analytic functions: The Fatou and Julia sets of multivalued analytical functions
Συγγραφείς: P. A. Gumenuk
Πηγή: Siberian Mathematical Journal. 43(6):1047-1054
Στοιχεία εκδότη: Russian Academy of Sciences - RAS (Rossiĭskaya Akademiya Nauk - RAN), Siberian Branch (Sibirskoe Otdelenie), Sobolev Insitute of Mathematics (Institut Matematiki Im. S. L. Soboleva), Novosibirsk, 2002.
Έτος έκδοσης: 2002
Θεματικοί όροι: Fatou set, multivalued function, analytic relation, Julia set, Small divisors, rotation domains and linearization in holomorphic dynamics, Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable, Normal functions of one complex variable, normal families, complex dynamics, Dynamical systems involving relations and correspondences in one complex variable, normal family
Περιγραφή: The author defines, in a natural way, the notions of an analytic relation and the Fatou and Julia sets of an analytic relation. The main result of the paper reads as follows: The Julia set of an analytic relation \(f\) coincides with the closure of the set of all repelling periodic points of \(f\) (in the case when \(f\) is defined on the entire Riemann sphere, \(f\) should not have fractional linear branches). This theorem generalizes the well-known fact for single-valued complex analytic functions.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml
ISSN: 0037-4466
DOI: 10.1023/a:1021117301173
Σύνδεσμος πρόσβασης: https://zbmath.org/1899826
https://link.springer.com/article/10.1023/A%3A1021117301173
Αριθμός Καταχώρησης: edsair.dedup.wf.002..bb6083fbc59ec02aa1c3397f5827f33f
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:00374466
DOI:10.1023/a:1021117301173