Limit heights and special values of the Riemann zeta function

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Limit heights and special values of the Riemann zeta function
Συγγραφείς: Gualdi, Roberto, Sombra, Martín
Πηγή: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Στοιχεία εκδότη: 2023.
Έτος έκδοσης: 2023
Θεματικοί όροι: Geometria algèbrica--Aritmètica, Classificació AMS::14 Algebraic geometry::14G Arithmetic problems. Diophantine geometry, L- functions, Classificació AMS::11 Number theory::11M Zeta and $L$-functions: analytic theory, Aritmètica, Arithmetical algebraic geometry, Funcions L, Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria algebraica, Classificació AMS::11 Number theory::11G Arithmetic algebraic geometry (Diophantine geometry), Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de nombres, Diophantine geometry
Περιγραφή: We study the distribution of the height of the intersection between the projective line defined by the linear polynomial x0+x1+x2 and its translate by a torsion point. We show that for a strict sequence of torsion points, the corresponding heights converge to a real number that is a rational multiple of a quotient of special values of the Riemann zeta function. We also determine the range of these heights, characterize the extremal cases, and study their limit for sequences of torsion points that are strict in proper algebraic subgroups. In addition, we interpret our main result from the viewpoint of Arakelov geometry, showing that for a strict sequence of torsion points the limit of the corresponding heights coincides with an Arakelov height of the cycle of the projective plane over the integers defined by the same linear polynomial. This is a particular case of a conjectural asymptotic version of the arithmetic Bézout theorem. Using the interplay between arithmetic and convex objects from the Arakelov geometry of toric varieties, we show that this Arakelov height can be expressed as the mean of a piecewise linear function on the amoeba of the projective line, which in turn can be computed as the aforementioned real number.
ArXiv preprint
Τύπος εγγράφου: Report
Περιγραφή αρχείου: application/pdf
Γλώσσα: English
Σύνδεσμος πρόσβασης: https://hdl.handle.net/2117/427692
https://arxiv.org/abs/2304.01966
https://hdl.handle.net/2117/427692
Αριθμός Καταχώρησης: edsair.dedup.wf.002..b3afa99bcef73ccffd906f0dc84cdd6f
Βάση Δεδομένων: OpenAIRE
Περιγραφή
Η περιγραφή δεν είναι διαθέσιμη