Dissertation/ Thesis
A Finite Element Method Solution to the Phase-Field Model of the Stefan Problem
| Τίτλος: | A Finite Element Method Solution to the Phase-Field Model of the Stefan Problem |
|---|---|
| Συγγραφείς: | Orteu Capdevila, Max |
| Συνεισφορές: | Sala Lardies, Esther, Fernández Méndez, Sonia, Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental |
| Πηγή: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
| Στοιχεία εκδότη: | Universitat Politècnica de Catalunya, 2021. |
| Έτος έκδοσης: | 2021 |
| Θεματικοί όροι: | Difference equations, FEM, Classificació AMS::65 Numerical analysis::65N Partial differential equations, boundary value problems, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica, Modeling, Difference equations, Partial--Numerical solutions, Classificació AMS::65 Numerical analysis::65N Partial differential equations, boundary value problems, 65 Numerical analysis::65N Partial differential equations, boundary value problems [Classificació AMS], Equacions diferencials parcials--solucions numèriques, Partial--Numerical solutions, Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC], Heat diffusion, Numerical methods, Phase-Field, PDEs |
| Περιγραφή: | The heat equation is known as one of the easiest PDEs to solve. However, when we consider the case where two different phases coexist, (i.e. the so-called Stefan problem), suddenly everything becomes much harder to solve, and numerical methods are needed. This work is concerned with the modeling of the Stefan problem through the Phase-Field method, and the implementation of a Finite Element Method solution to simulate examples in 2 dimensions. |
| Τύπος εγγράφου: | Bachelor thesis |
| Περιγραφή αρχείου: | application/pdf |
| Γλώσσα: | English |
| Σύνδεσμος πρόσβασης: | http://hdl.handle.net/2117/336299 https://hdl.handle.net/2117/336299 |
| Rights: | CC BY NC ND |
| Αριθμός Καταχώρησης: | edsair.dedup.wf.002..b35683e8854c1df3e48e01dd0138945f |
| Βάση Δεδομένων: | OpenAIRE |
| Η περιγραφή δεν είναι διαθέσιμη |