Heights of complete intersections in toric varieties

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Heights of complete intersections in toric varieties
Συγγραφείς: Gualdi, Roberto, Sombra, Martín
Πηγή: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Στοιχεία εκδότη: 2024.
Έτος έκδοσης: 2024
Θεματικοί όροι: Geometria algèbrica--Aritmètica, Classificació AMS::14 Algebraic geometry::14G Arithmetic problems. Diophantine geometry, Aritmètica, Arithmetical algebraic geometry, Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria algebraica, Classificació AMS::11 Number theory::11G Arithmetic algebraic geometry (Diophantine geometry), Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de nombres, Diophantine geometry
Περιγραφή: The height of a toric variety and that of its hypersurfaces can be expressed in convex-analytic terms as an adelic sum of mixed integrals of their roof functions and duals of their Ronkin functions. Here we extend these results to the 2-codimensional situation by presenting a limit formula predicting the typical height of the intersection of two hypersurfaces on a toric variety. More precisely, we prove that the height of the intersection cycle of two effective divisors translated by a strict sequence of torsion points converges to an adelic sum of mixed integrals of roof and duals of Ronkin functions. This partially confirms a previous conjecture of the authors about the average height of families of complete intersections in toric varieties.
ArXiv preprint
Τύπος εγγράφου: Report
Περιγραφή αρχείου: application/pdf
Γλώσσα: English
Σύνδεσμος πρόσβασης: https://hdl.handle.net/2117/427693
https://arxiv.org/abs/2412.16308
https://hdl.handle.net/2117/427693
Αριθμός Καταχώρησης: edsair.dedup.wf.002..9cfc8cff8ab533889a30edafe261c7dc
Βάση Δεδομένων: OpenAIRE
Περιγραφή
Η περιγραφή δεν είναι διαθέσιμη