Dissertation/ Thesis

Effective computation of base points of two-dimensional ideals

Bibliographic Details
Title: Effective computation of base points of two-dimensional ideals
Authors: Blanco Fernández, Guillem
Contributors: Alberich-Carramiñana, Maria, Àlvarez Montaner, Josep, Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72], Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, Álvarez Montaner, Josep, Alberich Carramiñana, Maria
Source: Digital.CSIC. Repositorio Institucional del CSIC
instname
Consejo Superior de Investigaciones Científicas (CSIC)
Recercat. Dipósit de la Recerca de Catalunya
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Publisher Information: Universidad Politécnica de Cataluña, 2015.
Publication Year: 2015
Subject Terms: Geometry, Algebraic, Algebraic, Base points, Two-dimensional ideal, Classificació AMS::14 Algebraic geometry::14Q Computational aspects in algebraic geometry, Puiseux series, 14 Algebraic geometry::14Q Computational aspects in algebraic geometry [Classificació AMS], Geometry, Matemàtiques i estadística::Geometria::Geometria algebraica [Àrees temàtiques de la UPC], Geometria algèbrica, Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria algebraica, Equisingularity
Description: This works focus on computational aspects of the theory of singularities of plane algebraic curves. We show how to use the Puiseux factorization of a curve, computed through the Newton-Puiseux algorithm, to study the equisingularity type of a curve. We present a novel version of the Newton-Puiseux algorithm that can compute all the Puiseux factorization of any arbitrary polynomial, removing the restriction of reduced inputs. Next, we introduce the theory of infinitely near points and the concept of base points of an ideal. Finally, we develop a novel algorithm that, using our novel version of the Newton-Puiseux algorithm, computes the weighted cluster of base points of any two dimensional ideal from any set of generators.
Universitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística. Departament de Matemàtica Aplicada I. Treball Final de Màster: Master of Science in Advanced Mathematics and Mathematical Engineering.
Document Type: Master thesis
File Description: application/pdf
Access URL: http://hdl.handle.net/10261/155302
http://hdl.handle.net/2117/78812
https://hdl.handle.net/2117/78812
Rights: CC BY NC SA
Accession Number: edsair.dedup.wf.002..8f5eb0655a8fc9c2c165b8b85d1cf9d1
Database: OpenAIRE
Description
Description not available.