Academic Journal

Tail risk measures using flexible parametric distributions

Bibliographic Details
Title: Tail risk measures using flexible parametric distributions
Authors: Sarabia Alegría, José María, Guillen, Montserrat, Chuliá, Helena, Prieto Mendoza, Faustino
Contributors: Universidad de Cantabria
Source: SORT-Statistics and Operations Research Transactions; 2019: Vol.: 43 Núm.: 2 July-December; 223–236
oai:raco.cat:article/361346
Repositori Institucional de la Universitat Rovira i Virgili
Universitat Rovira i virgili (URV)
SORT 43 (2) July-December 2019, 223-236
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
Articles publicats en revistes (Econometria, Estadística i Economia Aplicada)
Dipòsit Digital de la UB
instname
Universidad de Barcelona
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Publisher Information: Universitat Rovira i Virgili, 2019.
Publication Year: 2019
Subject Terms: Moments, Estadística matemàtica--Aplicacions, 62 Statistics::62P Applications [Classificació AMS], Classificació AMS::62 Statistics::62P Applications, multi-period risk assessment, Estimació d'un paràmetre, Multi-period risk assessment, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC], Classificació AMS::60 Probability theory and stochastic processes::60E Distribution theory, Value-at-risk, value-at-risk, Distribució (Teoria econòmica), Parameter estimation, Avaluació del risc, Distribution (Economic theory), 60 Probability theory and stochastic processes::60E Distribution theory [Classificació AMS], Risk assessment
Description: We propose a new type of risk measure for non-negative random variables that focuses on the tail of the distribution. The measure is inspired in general parametric distributions that are well-known in the statistical analysis of the size of income. We derive simple expressions for the conditional moments of these distributions, and we show that they are suitable for analysis of tail risk. The proposed method can easily be implemented in practice because it provides a simple one-step way to compute value-at-risk and tail value-at-risk. We show an illustration with currency exchange data. The data and implementation are open access for reproducibility.
The support received from the Spanish Ministry of Science/FEDER ECO2016-76203- C2-1-P / C2-2-P is acknowledged. MG thanks ICREA Academia. We are grateful for the constructive comments and suggestions provided by the Editor and the reviewers, which have improved the paper.
Document Type: Article
File Description: application/pdf
DOI: 10.2436/20.8080.02.86
Access URL: http://hdl.handle.net/20.500.11797/RP4681
http://hdl.handle.net/10902/18283
https://hdl.handle.net/2445/153697
http://hdl.handle.net/2445/153697
https://ddd.uab.cat/record/218268
http://hdl.handle.net/2117/362064
https://hdl.handle.net/2117/362064
https://dialnet.unirioja.es/servlet/articulo?codigo=7214090
http://diposit.ub.edu/dspace/handle/2445/153697
https://repositorio.unican.es/xmlui/handle/10902/18283
http://diposit.ub.edu/dspace/bitstream/2445/153697/1/693933.pdf
https://hdl.handle.net/10902/18283
Rights: CC BY NC ND
Accession Number: edsair.dedup.wf.002..600e3354a89935d6248bb5fb389eb9e4
Database: OpenAIRE
Description
DOI:10.2436/20.8080.02.86