Λεπτομέρειες βιβλιογραφικής εγγραφής
| Τίτλος: |
Über \(\lambda\)-Ringstrukturen auf dem Burnside-Ring |
| Συγγραφείς: |
tom Dieck, Tammo |
| Στοιχεία εκδότη: |
Springer, Berlin/Heidelberg |
| Θεματικοί όροι: |
Ordinary representations and characters, integer valued functions, Finite nilpotent groups, \(p\)-groups, Burnside ring, Finite transformation groups, \(K\)-theory operations and generalized cohomology operations in algebraic topology, special \(\lambda \) -ring, p-group, \(\psi \) -structure, conjugacy classes |
| Περιγραφή: |
The author proves: For a \(\psi^ p\)-group G the \(\psi\)-structure on the Burnside ring A(G) of G, which is defined below, induces \(\lambda^ i\)- operators that make A(G) a special \(\lambda\)-ring. Here the \(\psi^ p\)- group G is a p-group satisfying: \(H(1)=\{g^ p:\) \(g\in H\}\) as well as \(H(-1)=\{g:\) \(g^ p\in H\}\) are subgroups of G for every \(H\leq G\). Considering A(G) as part of the ring of all integer valued functions f on the conjugacy classes (H) of subgroups H of G, one defines the \(\psi\)- structure by \(\psi^ pf(H)=f(H(1))\), \(\psi^ kf=f\), when \(p\dag k\), and \(\psi^ k\psi^{\ell}=\psi^{k\ell}\). The proof has very nice identities of (p-adic) power series. |
| Τύπος εγγράφου: |
Article |
| Περιγραφή αρχείου: |
application/xml |
| DOI: |
10.1007/bf01174185 |
| Σύνδεσμος πρόσβασης: |
https://zbmath.org/3884361 |
| Αριθμός Καταχώρησης: |
edsair.c2b0b933574d..40f5b4979c0a15ac66f7204217c906f7 |
| Βάση Δεδομένων: |
OpenAIRE |