Αναλυτική απόδειξη του θεωρήματος των πρώτων αριθμών
Στη θεωρία αριθμών , το θεώρημα πρώτων αριθμών περιγράφει την ασυμπτωτική κατανομή των πρώτων αριθμών μεταξύ των θετικών ακεραίων. Το θεώρημα αποδείχθηκε ανεξάρτητα από τον Jacques Hadamard και τον Charles Jean de la Vallée-Poussin το 1896 χρησιμοποιώντας ιδέες που εισήγαγε ο Μπέρναρντ Ρίμαν (ειδικό...
Αποθηκεύτηκε σε:
| Κύριος συγγραφέας: | |
|---|---|
| Άλλοι συγγραφείς: | |
| Γλώσσα: | el_GR |
| Δημοσίευση: |
2019
|
| Θέματα: | |
| Διαθέσιμο Online: | http://hdl.handle.net/11610/18974 |
| Ετικέτες: |
Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
|
| _version_ | 1828460201287614464 |
|---|---|
| author | Βαρδάκης, Γεώργιος |
| author2 | Φελουζής, Ευάγγελος |
| author_sort | Βαρδάκης, Γεώργιος |
| collection | DSpace |
| description | Στη θεωρία αριθμών , το θεώρημα πρώτων αριθμών περιγράφει την ασυμπτωτική κατανομή των πρώτων αριθμών μεταξύ των θετικών ακεραίων. Το θεώρημα αποδείχθηκε ανεξάρτητα από τον Jacques Hadamard και τον Charles Jean de la Vallée-Poussin το 1896 χρησιμοποιώντας ιδέες που εισήγαγε ο Μπέρναρντ Ρίμαν (ειδικότερα, η συνάρτηση ζήτα του Riemann).
Η πρώτη τέτοια κατανομή που βρέθηκε είναι η π(N) ~ N / log(N), όπου π(N) είναι η συνάρτηση καταμέτρησης των πρώτων αριθμών και log(N) είναι ο φυσικός λογάριθμος του N. Αυτό σημαίνει ότι για αρκετά μεγάλα Ν, η πιθανότητα ένας τυχαίος ακέραιος που δεν είναι μεγαλύτερος από το Ν είναι πρώτος αν είναι πολύ κοντά στο 1 / log(N). Κατά συνέπεια, ένας τυχαίος ακέραιος με το πολύ 2n ψηφία ( για αρκετά μεγάλο n) έχει περίπου τις μισές πιθανότητες να είναι πρώτος από ένα τυχαίο ακέραιο με το πολύ n ψηφία. Για παράδειγμα, μεταξύ των θετικών ακεραίων με το πολύ 1000 ψηφία, περίπου ένα στους 2300 είναι πρώτος (log(101000) ≈ 2302.6), λαμβάνοντας υπόψη ότι μεταξύ των θετικών ακέραιων με το πολύ 2000 ψηφία περίπου ένα στους 4600 είναι πρώτος (log(102000) ≈ 4605.2). Με άλλα λόγια, η μέση διαφορά ανάμεσα στους διαδοχικούς πρώτους αριθμούς μεταξύ των πρώτων N ακεραίων είναι περίπου log(N). |
| id | oai:hellanicus.lib.aegean.gr:11610-18974 |
| institution | Hellanicus |
| language | el_GR |
| publishDate | 2019 |
| record_format | dspace |
| title | Αναλυτική απόδειξη του θεωρήματος των πρώτων αριθμών |
| topic | πρώτοι αριθμοί αναλυτική συνέχιση μιγαδική Riemman holomorphic meromorphic Numbers, Prime (URL: http://id.loc.gov/authorities/subjects/sh85093218) Number theory (URL: http://id.loc.gov/authorities/subjects/sh85093222) Holomorphic functions (URL: http://id.loc.gov/authorities/subjects/sh85061536) Functions, Meromorphic (URL: http://id.loc.gov/authorities/subjects/sh85052343) |
| url | http://hdl.handle.net/11610/18974 |
| work_keys_str_mv | AT bardakēsgeōrgios analytikēapodeixētoutheōrēmatostōnprōtōnarithmōn |