Αναλυτική απόδειξη του θεωρήματος των πρώτων αριθμών

Στη θεωρία αριθμών , το θεώρημα πρώτων αριθμών περιγράφει την ασυμπτωτική κατανομή των πρώτων αριθμών μεταξύ των θετικών ακεραίων. Το θεώρημα αποδείχθηκε ανεξάρτητα από τον Jacques Hadamard και τον Charles Jean de la Vallée-Poussin το 1896 χρησιμοποιώντας ιδέες που εισήγαγε ο Μπέρναρντ Ρίμαν (ειδικό...

Full description

Saved in:
Bibliographic Details
Main Author: Βαρδάκης, Γεώργιος
Other Authors: Φελουζής, Ευάγγελος
Language:el_GR
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/11610/18974
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Στη θεωρία αριθμών , το θεώρημα πρώτων αριθμών περιγράφει την ασυμπτωτική κατανομή των πρώτων αριθμών μεταξύ των θετικών ακεραίων. Το θεώρημα αποδείχθηκε ανεξάρτητα από τον Jacques Hadamard και τον Charles Jean de la Vallée-Poussin το 1896 χρησιμοποιώντας ιδέες που εισήγαγε ο Μπέρναρντ Ρίμαν (ειδικότερα, η συνάρτηση ζήτα του Riemann). Η πρώτη τέτοια κατανομή που βρέθηκε είναι η π(N) ~ N / log(N), όπου π(N) είναι η συνάρτηση καταμέτρησης των πρώτων αριθμών και log(N) είναι ο φυσικός λογάριθμος του N. Αυτό σημαίνει ότι για αρκετά μεγάλα Ν, η πιθανότητα ένας τυχαίος ακέραιος που δεν είναι μεγαλύτερος από το Ν είναι πρώτος αν είναι πολύ κοντά στο 1 / log(N). Κατά συνέπεια, ένας τυχαίος ακέραιος με το πολύ 2n ψηφία ( για αρκετά μεγάλο n) έχει περίπου τις μισές πιθανότητες να είναι πρώτος από ένα τυχαίο ακέραιο με το πολύ n ψηφία. Για παράδειγμα, μεταξύ των θετικών ακεραίων με το πολύ 1000 ψηφία, περίπου ένα στους 2300 είναι πρώτος (log(101000) ≈ 2302.6), λαμβάνοντας υπόψη ότι μεταξύ των θετικών ακέραιων με το πολύ 2000 ψηφία περίπου ένα στους 4600 είναι πρώτος (log(102000) ≈ 4605.2). Με άλλα λόγια, η μέση διαφορά ανάμεσα στους διαδοχικούς πρώτους αριθμούς μεταξύ των πρώτων N ακεραίων είναι περίπου log(N).