Academic Journal

A theory of initialisation's impact on specialisation*

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: A theory of initialisation's impact on specialisation*
Συγγραφείς: Jarvis, Devon, Lee, Sebastian, Carla Juliette Domine, Clementine, Saxe, Andrew M., Sarao Mannelli, Stefano, 1992
Πηγή: JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT. 2025(11)
Θεματικοί όροι: analysis of algorithms, online dynamics, deep learning, machine learning
Περιγραφή: Prior work has demonstrated a consistent tendency in neural networks engaged in continual learning tasks, wherein intermediate task similarity results in the highest levels of catastrophic interference. This phenomenon is attributed to the network's tendency to reuse learned features across tasks. However, this explanation heavily relies on the premise that neuron specialisation occurs, i.e. the emergence of localised representations. Our investigation challenges the validity of this assumption. Using theoretical frameworks for the analysis of neural networks, we show a strong dependence of specialisation on the initial condition. More precisely, we show that weight imbalance and high weight entropy can favour specialised solutions. We then apply these insights in the context of continual learning, first showing the emergence of a monotonic relation between task-similarity and forgetting in non-specialised networks. Finally, we show that specialisation by weight imbalance is beneficial on the commonly employed elastic weight consolidation regularisation technique.
Περιγραφή αρχείου: electronic
Σύνδεσμος πρόσβασης: https://research.chalmers.se/publication/549475
https://research.chalmers.se/publication/549475/file/549475_Fulltext.pdf
Βάση Δεδομένων: SwePub
Περιγραφή
ISSN:17425468
DOI:10.1088/1742-5468/ae1214