Academic Journal

Machine learning-based lifelong estimation of lithium plating potential: A path to health-aware fastest battery charging

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Machine learning-based lifelong estimation of lithium plating potential: A path to health-aware fastest battery charging
Συγγραφείς: Zhang, Yizhou, 1991, Wik, Torsten, 1968, Bergström, John, Zou, Changfu, 1987
Πηγή: Datadriven förlängning av livslängden och optimering av prestanda för fordonsbatterisystem Energy Storage Materials. 74
Θεματικοί όροι: Lithium plating potential estimation, Lithium-ion battery, Fast charging, Data-driven models, Machine learning
Περιγραφή: To enable a shift from fossil fuels to renewable and sustainable transport, batteries must allow fast charging and exhibit extended lifetimes---objectives that traditionally conflict. Current charging technologies often compromise one attribute for the other, leading to either inconvenience or diminished resource efficiency in battery-powered vehicles. For lithium-ion batteries, the way to meet both objectives is for the lithium plating potential at the anode surface to remain positive. In this study, we address this challenge by introducing a novel method that involves real-time monitoring and control of the plating potential in lithium-ion battery cells throughout their lifespan. Our experimental results on three-electrode cells reveal that our approach can enable batteries to charge at least 30% faster while almost doubling their lifetime. To facilitate the adoption of these findings in commercial applications, we propose a machine learning-based framework for lifelong plating potential estimation, utilizing readily available battery data from electric vehicles. The resulting model demonstrates high fidelity and robustness under diverse operating conditions, achieving a mean absolute error of merely 3.37 mV. This research outlines a practical methodology to prevent lithium plating and enable the fastest health-conscious battery charging.
Περιγραφή αρχείου: electronic
Σύνδεσμος πρόσβασης: https://research.chalmers.se/publication/544434
https://research.chalmers.se/publication/543531
https://research.chalmers.se/publication/544244
https://research.chalmers.se/publication/544434/file/544434_Fulltext.pdf
Βάση Δεδομένων: SwePub
FullText Links:
  – Type: other
Text:
  Availability: 0
CustomLinks:
  – Url: https://research.chalmers.se/publication/544434#
    Name: EDS - SwePub (ns324271)
    Category: fullText
    Text: View record in SwePub
  – Url: https://www.doi.org/10.1016/j.ensm.2024.103877?
    Name: ScienceDirect (all content) (s7799221)
    Category: fullText
    Text: View record from ScienceDirect
    MouseOverText: View record from ScienceDirect
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.research.chalmers.se.30f433eb.8e57.4f80.9fe0.698eb1d4f4ae
RelevancyScore: 1065
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Machine learning-based lifelong estimation of lithium plating potential: A path to health-aware fastest battery charging
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Zhang%2C+Yizhou%22">Zhang, Yizhou</searchLink>, 1991<br /><searchLink fieldCode="AR" term="%22Wik%2C+Torsten%22">Wik, Torsten</searchLink>, 1968<br /><searchLink fieldCode="AR" term="%22Bergström%2C+John%22">Bergström, John</searchLink><br /><searchLink fieldCode="AR" term="%22Zou%2C+Changfu%22">Zou, Changfu</searchLink>, 1987
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Datadriven förlängning av livslängden och optimering av prestanda för fordonsbatterisystem Energy Storage Materials</i>. 74
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Lithium+plating+potential+estimation%22">Lithium plating potential estimation</searchLink><br /><searchLink fieldCode="DE" term="%22Lithium-ion+battery%22">Lithium-ion battery</searchLink><br /><searchLink fieldCode="DE" term="%22Fast+charging%22">Fast charging</searchLink><br /><searchLink fieldCode="DE" term="%22Data-driven+models%22">Data-driven models</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+learning%22">Machine learning</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: To enable a shift from fossil fuels to renewable and sustainable transport, batteries must allow fast charging and exhibit extended lifetimes---objectives that traditionally conflict. Current charging technologies often compromise one attribute for the other, leading to either inconvenience or diminished resource efficiency in battery-powered vehicles. For lithium-ion batteries, the way to meet both objectives is for the lithium plating potential at the anode surface to remain positive. In this study, we address this challenge by introducing a novel method that involves real-time monitoring and control of the plating potential in lithium-ion battery cells throughout their lifespan. Our experimental results on three-electrode cells reveal that our approach can enable batteries to charge at least 30% faster while almost doubling their lifetime. To facilitate the adoption of these findings in commercial applications, we propose a machine learning-based framework for lifelong plating potential estimation, utilizing readily available battery data from electric vehicles. The resulting model demonstrates high fidelity and robustness under diverse operating conditions, achieving a mean absolute error of merely 3.37 mV. This research outlines a practical methodology to prevent lithium plating and enable the fastest health-conscious battery charging.
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/544434" linkWindow="_blank">https://research.chalmers.se/publication/544434</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/543531" linkWindow="_blank">https://research.chalmers.se/publication/543531</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/544244" linkWindow="_blank">https://research.chalmers.se/publication/544244</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/544434/file/544434_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/544434/file/544434_Fulltext.pdf</link>
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.30f433eb.8e57.4f80.9fe0.698eb1d4f4ae
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1016/j.ensm.2024.103877
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Lithium plating potential estimation
        Type: general
      – SubjectFull: Lithium-ion battery
        Type: general
      – SubjectFull: Fast charging
        Type: general
      – SubjectFull: Data-driven models
        Type: general
      – SubjectFull: Machine learning
        Type: general
    Titles:
      – TitleFull: Machine learning-based lifelong estimation of lithium plating potential: A path to health-aware fastest battery charging
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Zhang, Yizhou
      – PersonEntity:
          Name:
            NameFull: Wik, Torsten
      – PersonEntity:
          Name:
            NameFull: Bergström, John
      – PersonEntity:
          Name:
            NameFull: Zou, Changfu
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 24058297
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: CTH_SWEPUB
          Numbering:
            – Type: volume
              Value: 74
          Titles:
            – TitleFull: Datadriven förlängning av livslängden och optimering av prestanda för fordonsbatterisystem Energy Storage Materials
              Type: main
ResultId 1