Academic Journal
Survey: Time-Series Data Preprocessing: A Survey and an Empirical Analysis
| Title: | Survey: Time-Series Data Preprocessing: A Survey and an Empirical Analysis |
|---|---|
| Authors: | Tawalkuli, Amal, Havers, Bastian, 1991, Gulisano, Vincenzo Massimiliano, 1984, Kaiser, Daniel, Engel, Thomas |
| Source: | AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Journal of Engineering Research. 13(2):674-711 |
| Subject Terms: | Data Preprocessing, Data Quality |
| Description: | Data are naturally collected in their raw state and must undergo a series of preprocessing steps to obtain data in their input state for Artificial Intelligence (AI) and other applications. The data preprocessing phase is not only necessary to fit input requirements but also effective in improving AI training efficiency and output accuracy. Data preprocessing is a time consuming and complex phase that lacks a unified and structured approach. We survey data preprocessing techniques under different categories to provide an extended and structured scope of data preprocessing relevant to numerical time-series data. We also provide an empirical analysis of the impact of preprocessing techniques on the quality of the data and on the performance of AI algorithms. In addition, we discuss the feasibility of distributing some of the surveyed techniques to the edge. Leveraging edge computing to distribute data preprocessing reduces the workload on central systems, creates more manageable data lakes, reduces the consumption of resources (e.g., energy) and enables EdgeAI. |
| File Description: | electronic |
| Access URL: | https://research.chalmers.se/publication/540273 https://research.chalmers.se/publication/540495 https://research.chalmers.se/publication/540495/file/540495_Fulltext.pdf |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/540273# Name: EDS - SwePub (ns324271) Category: fullText Text: View record in SwePub – Url: https://www.doi.org/10.1016/j.jer.2024.02.018? Name: ScienceDirect (all content) (s7799221) Category: fullText Text: View record from ScienceDirect MouseOverText: View record from ScienceDirect – Url: https://dx.doi.org/doi:10.1016/j.jer.2024.02.018 Name: EDS - Springer Nature Journals (s7799221) Category: fullText Text: View record at Springer – Url: https://resolver.ebsco.com/c/fiv2js/result?sid=EBSCO:edsswe&genre=article&issn=23071885&ISBN=&volume=13&issue=2&date=20250101&spage=674&pages=674-711&title=AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Journal of Engineering Research&atitle=Survey%3A%20Time-Series%20Data%20Preprocessing%3A%20A%20Survey%20and%20an%20Empirical%20Analysis&aulast=Tawalkuli%2C%20Amal&id=DOI:10.1016/j.jer.2024.02.018 Name: Full Text Finder (for New FTF UI) (ns324271) Category: fullText Text: Full Text Finder MouseOverText: Full Text Finder |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.1d423331.6919.45dc.a4f1.a45b0f1013c8 RelevancyScore: 1115 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1114.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Survey: Time-Series Data Preprocessing: A Survey and an Empirical Analysis – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Tawalkuli%2C+Amal%22">Tawalkuli, Amal</searchLink><br /><searchLink fieldCode="AR" term="%22Havers%2C+Bastian%22">Havers, Bastian</searchLink>, 1991<br /><searchLink fieldCode="AR" term="%22Gulisano%2C+Vincenzo+Massimiliano%22">Gulisano, Vincenzo Massimiliano</searchLink>, 1984<br /><searchLink fieldCode="AR" term="%22Kaiser%2C+Daniel%22">Kaiser, Daniel</searchLink><br /><searchLink fieldCode="AR" term="%22Engel%2C+Thomas%22">Engel, Thomas</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Journal of Engineering Research</i>. 13(2):674-711 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Data+Preprocessing%22">Data Preprocessing</searchLink><br /><searchLink fieldCode="DE" term="%22Data+Quality%22">Data Quality</searchLink> – Name: Abstract Label: Description Group: Ab Data: Data are naturally collected in their raw state and must undergo a series of preprocessing steps to obtain data in their input state for Artificial Intelligence (AI) and other applications. The data preprocessing phase is not only necessary to fit input requirements but also effective in improving AI training efficiency and output accuracy. Data preprocessing is a time consuming and complex phase that lacks a unified and structured approach. We survey data preprocessing techniques under different categories to provide an extended and structured scope of data preprocessing relevant to numerical time-series data. We also provide an empirical analysis of the impact of preprocessing techniques on the quality of the data and on the performance of AI algorithms. In addition, we discuss the feasibility of distributing some of the surveyed techniques to the edge. Leveraging edge computing to distribute data preprocessing reduces the workload on central systems, creates more manageable data lakes, reduces the consumption of resources (e.g., energy) and enables EdgeAI. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/540273" linkWindow="_blank">https://research.chalmers.se/publication/540273</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/540495" linkWindow="_blank">https://research.chalmers.se/publication/540495</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/540495/file/540495_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/540495/file/540495_Fulltext.pdf</link> |
| PLink | https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.1d423331.6919.45dc.a4f1.a45b0f1013c8 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1016/j.jer.2024.02.018 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 38 StartPage: 674 Subjects: – SubjectFull: Data Preprocessing Type: general – SubjectFull: Data Quality Type: general Titles: – TitleFull: Survey: Time-Series Data Preprocessing: A Survey and an Empirical Analysis Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Tawalkuli, Amal – PersonEntity: Name: NameFull: Havers, Bastian – PersonEntity: Name: NameFull: Gulisano, Vincenzo Massimiliano – PersonEntity: Name: NameFull: Kaiser, Daniel – PersonEntity: Name: NameFull: Engel, Thomas IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 23071885 – Type: issn-print Value: 23071877 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 13 – Type: issue Value: 2 Titles: – TitleFull: AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2 Journal of Engineering Research Type: main |
| ResultId | 1 |