Academic Journal

Dose-efficient scanning Compton X-ray microscopy

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Dose-efficient scanning Compton X-ray microscopy
Συγγραφείς: Li, Tang, Dresselhaus, J. Lukas, Ivanov, Nikolay, Prasciolu, Mauro, Fleckenstein, Holger, Yefanov, Oleksandr, Zhang, Wenhui, Pennicard, David, Dippel, Ann Christin, Gutowski, Olof, Villanueva-Perez, Pablo, Chapman, Henry N., Bajt, Saša
Συνεισφορές: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Photon Science and Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Avancerade ljuskällor, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator, Lund University, Faculty of Science, Department of Physics, Synchrotron Radiation Research, Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Synkrotronljusfysik, Originator
Πηγή: Light: Science and Applications. 12(1)
Θεματικοί όροι: Medical and Health Sciences, Clinical Medicine, Radiology and Medical Imaging, Medicin och hälsovetenskap, Klinisk medicin, Radiologi och bildbehandling
Περιγραφή: The highest resolution of images of soft matter and biological materials is ultimately limited by modification of the structure, induced by the necessarily high energy of short-wavelength radiation. Imaging the inelastically scattered X-rays at a photon energy of 60 keV (0.02 nm wavelength) offers greater signal per energy transferred to the sample than coherent-scattering techniques such as phase-contrast microscopy and projection holography. We present images of dried, unstained, and unfixed biological objects obtained by scanning Compton X-ray microscopy, at a resolution of about 70 nm. This microscope was realised using novel wedged multilayer Laue lenses that were fabricated to sub-ångström precision, a new wavefront measurement scheme for hard X rays, and efficient pixel-array detectors. The doses required to form these images were as little as 0.02% of the tolerable dose and 0.05% of that needed for phase-contrast imaging at similar resolution using 17 keV photon energy. The images obtained provide a quantitative map of the projected mass density in the sample, as confirmed by imaging a silicon wedge. Based on these results, we find that it should be possible to obtain radiation damage-free images of biological samples at a resolution below 10 nm.
Σύνδεσμος πρόσβασης: https://doi.org/10.1038/s41377-023-01176-5
Βάση Δεδομένων: SwePub
Περιγραφή
ISSN:20955545
20477538
DOI:10.1038/s41377-023-01176-5