Academic Journal

Deterministic protocols for Voronoi diagrams and triangulations of planar point sets on the congested clique

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Deterministic protocols for Voronoi diagrams and triangulations of planar point sets on the congested clique
Συγγραφείς: Jansson, Jesper, Levcopoulos, Christos, Lingas, Andrzej, Polishchuk, Valentin, Xue, Quan
Συνεισφορές: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Originator
Πηγή: Theoretical Computer Science. 1055
Θεματικοί όροι: Natural Sciences, Computer and Information Sciences, Computer Sciences, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datavetenskap (Datalogi)
Περιγραφή: We study the problems of computing the Voronoi diagram and a triangulation of a set of n2 points with O(log⁡n)-bit coordinates in the Euclidean plane in a substantially sublinear in n number of rounds in the congested clique model with n nodes. First, we observe that if the points are uniformly at random distributed in a unit square then their Voronoi diagram within the square can be computed in O(1) rounds with high probability (w.h.p.). Next, we show that if a very weak smoothness condition is satisfied by an input set of n2 points with O(log⁡n)-bit coordinates in the unit square then the Voronoi diagram of the point set within the unit square can be deterministically computed in O(log⁡n) rounds in this model. Finally, we present a deterministic O(log⁡n)-round protocol for a triangulation of n2 points with O(log⁡n)-bit coordinates in the Euclidean plane. It relies on our novel method for extending triangulations of two planar point sets separated by a straight line to a complete triangulation of the union of the sets in O(1) rounds.
Σύνδεσμος πρόσβασης: https://doi.org/10.1016/j.tcs.2025.115491
Βάση Δεδομένων: SwePub
Περιγραφή
ISSN:03043975
DOI:10.1016/j.tcs.2025.115491