Academic Journal

Reusability report: Unpaired deep-learning approaches for holographic image

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Reusability report: Unpaired deep-learning approaches for holographic image
Συγγραφείς: Zhang, Yuhe, Ritschel, Tobias, Villanueva Perez, Pablo
Συνεισφορές: Lund University, Faculty of Science, Department of Physics, Synchrotron Radiation Research, Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Synkrotronljusfysik, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Photon Science and Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Avancerade ljuskällor, Originator
Πηγή: Nature Machine Intelligence Advancing X-ray imaging with deep learning. 6(3):284-290
Θεματικοί όροι: Natural Sciences, Physical Sciences, Atom and Molecular Physics and Optics, Naturvetenskap, Fysik, Atom- och molekylfysik och optik (Här ingår: Kemisk fysik, kvantoptik), Computer and Information Sciences, Computer graphics and computer vision, Data- och informationsvetenskap (Datateknik), Datorgrafik och datorseende
Περιγραφή: Deep-learning methods using unpaired datasets hold great potential for image reconstruction, especially in biomedical imaging where obtaining paired datasets is often difficult due to practical concerns. A recent study by Lee et al. (Nature Machine Intelligence 2023) has introduced a parameterized physical model (referred to as FMGAN) using the unpaired approach for adaptive holographic imaging, which replaces the forward generator network with a physical model parameterized on the propagation distance of the probing light. FMGAN has demonstrated its capability to reconstruct the complex phase and amplitude of objects, as well as the propagation distance, even in scenarios where the object-to-sensor distance exceeds the range of the training data. We performed additional experiments to comprehensively assess FMGAN’s capabilities and limitations. As in the original paper, we compared FMGAN to two state-of-the-art unpaired methods, CycleGAN and PhaseGAN, and evaluated their robustness and adaptability under diverse conditions. Our findings highlight FMGAN’s reproducibility and generalizability when dealing with both in-distribution and out-of-distribution data, corroborating the results reported by the original authors. We also extended FMGAN with explicit forward models describing the response of specific optical systems, which improved performance when dealing with non-perfect systems. However, we observed that FMGAN encounters difficulties when explicit forward models are unavailable. In such scenarios, PhaseGAN outperformed FMGAN.
Σύνδεσμος πρόσβασης: https://doi.org/10.1038/s42256-024-00798-7
Βάση Δεδομένων: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1038/s42256-024-00798-7#
    Name: EDS - SwePub (ns324271)
    Category: fullText
    Text: View record in SwePub
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.3144bef6.0304.4a57.a1fd.9eb291c75aa7
RelevancyScore: 1064
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.42810058594
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Reusability report: Unpaired deep-learning approaches for holographic image
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Zhang%2C+Yuhe%22">Zhang, Yuhe</searchLink><br /><searchLink fieldCode="AR" term="%22Ritschel%2C+Tobias%22">Ritschel, Tobias</searchLink><br /><searchLink fieldCode="AR" term="%22Villanueva+Perez%2C+Pablo%22">Villanueva Perez, Pablo</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Faculty of Science, Department of Physics, Synchrotron Radiation Research, Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Synkrotronljusfysik, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator<br />Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Photon Science and Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Avancerade ljuskällor, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Nature Machine Intelligence Advancing X-ray imaging with deep learning</i>. 6(3):284-290
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Physical+Sciences%22">Physical Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Atom+and+Molecular+Physics+and+Optics%22">Atom and Molecular Physics and Optics</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Fysik%22">Fysik</searchLink><br /><searchLink fieldCode="DE" term="%22Atom-+och+molekylfysik+och+optik+%28Här+ingår%3A+Kemisk+fysik%22">Atom- och molekylfysik och optik (Här ingår: Kemisk fysik</searchLink><br /><searchLink fieldCode="DE" term="%22kvantoptik%29%22">kvantoptik)</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+graphics+and+computer+vision%22">Computer graphics and computer vision</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Datorgrafik+och+datorseende%22">Datorgrafik och datorseende</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Deep-learning methods using unpaired datasets hold great potential for image reconstruction, especially in biomedical imaging where obtaining paired datasets is often difficult due to practical concerns. A recent study by Lee et al. (Nature Machine Intelligence 2023) has introduced a parameterized physical model (referred to as FMGAN) using the unpaired approach for adaptive holographic imaging, which replaces the forward generator network with a physical model parameterized on the propagation distance of the probing light. FMGAN has demonstrated its capability to reconstruct the complex phase and amplitude of objects, as well as the propagation distance, even in scenarios where the object-to-sensor distance exceeds the range of the training data. We performed additional experiments to comprehensively assess FMGAN’s capabilities and limitations. As in the original paper, we compared FMGAN to two state-of-the-art unpaired methods, CycleGAN and PhaseGAN, and evaluated their robustness and adaptability under diverse conditions. Our findings highlight FMGAN’s reproducibility and generalizability when dealing with both in-distribution and out-of-distribution data, corroborating the results reported by the original authors. We also extended FMGAN with explicit forward models describing the response of specific optical systems, which improved performance when dealing with non-perfect systems. However, we observed that FMGAN encounters difficulties when explicit forward models are unavailable. In such scenarios, PhaseGAN outperformed FMGAN.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1038/s42256-024-00798-7" linkWindow="_blank">https://doi.org/10.1038/s42256-024-00798-7</link>
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.3144bef6.0304.4a57.a1fd.9eb291c75aa7
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1038/s42256-024-00798-7
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 7
        StartPage: 284
    Subjects:
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Physical Sciences
        Type: general
      – SubjectFull: Atom and Molecular Physics and Optics
        Type: general
      – SubjectFull: Naturvetenskap
        Type: general
      – SubjectFull: Fysik
        Type: general
      – SubjectFull: Atom- och molekylfysik och optik (Här ingår: Kemisk fysik
        Type: general
      – SubjectFull: kvantoptik)
        Type: general
      – SubjectFull: Computer and Information Sciences
        Type: general
      – SubjectFull: Computer graphics and computer vision
        Type: general
      – SubjectFull: Data- och informationsvetenskap (Datateknik)
        Type: general
      – SubjectFull: Datorgrafik och datorseende
        Type: general
    Titles:
      – TitleFull: Reusability report: Unpaired deep-learning approaches for holographic image
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Zhang, Yuhe
      – PersonEntity:
          Name:
            NameFull: Ritschel, Tobias
      – PersonEntity:
          Name:
            NameFull: Villanueva Perez, Pablo
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Science, Department of Physics, Synchrotron Radiation Research, Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Synkrotronljusfysik, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Photon Science and Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Avancerade ljuskällor, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 15
              M: 02
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 25225839
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 6
            – Type: issue
              Value: 3
          Titles:
            – TitleFull: Nature Machine Intelligence Advancing X-ray imaging with deep learning
              Type: main
ResultId 1