Academic Journal

Evaluation of Wildland Fire Detection Methods Using Expert Input

Bibliographic Details
Title: Evaluation of Wildland Fire Detection Methods Using Expert Input
Authors: Björck, Johan, McNamee, Margaret S.
Contributors: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Building and Environmental Technology, Division of Fire Safety Engineering, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för bygg- och miljöteknologi, Avdelningen för Brandteknik, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: The Energy Transition, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Energiomställningen, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Circular Building Sector, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Cirkulär byggindustri, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Aerosols, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Aerosoler, Originator
Source: Fire Technology. 61(4):2547-2569
Subject Terms: Engineering and Technology, Civil Engineering, Other Civil Engineering, Teknik, Samhällsbyggnadsteknik, Annan samhällsbyggnadsteknik
Description: Recently the Intergovernmental Panel on Climate Change released their 6th Assessment reports which confirm that the impact of climate change is visible, e.g. through an increased weather volatility leading both to hotter drier weather and increased flooding in some regions globally. One clear example of this is the increased prevalence of wildfires in recent years and increasing wildfire potential in the future in some regions. Sweden is in the northern most part of Europe and has the highest forest density in the European Union. In total, nearly 17 percent of all forests in Europe are located in Sweden. Even in a global sense, Sweden has extensive forestry, and provides 10 percent of the sawn timber, pulp and paper that is traded on the global market. Given these preconditions, in 2020 the Swedish Civil Contingencies Agency (MSB) identified the need to investigate the conditions for current and possible future detection methods for wildfires in Sweden. An overview of common current methods was made and review of these methods was conducted through interviews with national experts. The expert evaluation indicated an opportunity to build wildfire detection in Sweden based on weather radar, radar/satellite combinations, and/or airborne radar. The development of such detection systems could repurpose existing infrastructure and reduce the overall investment needs, implying that Sweden could adopt such methods rapidly provided there is sufficient political will. The methodology shows the advantage of using expert input to identify appropriate technical measures for further research investments given limited resources.
Access URL: https://doi.org/10.1007/s10694-024-01696-5
Database: SwePub
Description
ISSN:15728099
DOI:10.1007/s10694-024-01696-5