Academic Journal

Variable impedance skill learning for contact-rich manipulation

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Variable impedance skill learning for contact-rich manipulation
Συγγραφείς: Yang, Quantao, Dürr, Alexander, Topp, Elin Anna, Stork, Johannes, Stoyanov, Todor
Συνεισφορές: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Robotics and Semantic Systems, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Robotik och Semantiska System, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator, Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Originator
Πηγή: IEEE Robotics and Automation Letters. 7(3):8391-8398
Θεματικοί όροι: Engineering and Technology, Electrical Engineering, Electronic Engineering, Information Engineering, Control Engineering, Teknik, Elektroteknik och elektronik, Reglerteknik, Robotics and automation, Robotik och automation, Natural Sciences, Computer and Information Sciences, Computer graphics and computer vision, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorgrafik och datorseende
Περιγραφή: Contact-rich manipulation tasks remain a hard problem in robotics that requires interaction with unstructured environments. Reinforcement Learning (RL) is one potential solution to such problems, as it has been successfully demonstrated on complex continuous control tasks. Nevertheless, current state-of-the-art methods require policy training in simulation to prevent undesired behavior and later domain transfer even for simple skills involving contact. In this paper, we address the problem of learning contact-rich manipulation policies by extending an existing skill-based RL framework with a variable impedance action space. Our method leverages a small set of suboptimal demonstration trajectories and learns from both position, but also crucially impedance-space information. We evaluate our method on a number of peg-in-hole task variants with a Franka Panda arm and demonstrate that learning variable impedance actions for RL in Cartesian space can be deployed directly on the real robot, without resorting to learning in simulation.
Σύνδεσμος πρόσβασης: https://doi.org/10.1109/LRA.2022.3187276
Βάση Δεδομένων: SwePub
Περιγραφή
ISSN:23773766
DOI:10.1109/LRA.2022.3187276