Academic Journal
Variable impedance skill learning for contact-rich manipulation
| Title: | Variable impedance skill learning for contact-rich manipulation |
|---|---|
| Authors: | Yang, Quantao, Dürr, Alexander, Topp, Elin Anna, Stork, Johannes, Stoyanov, Todor |
| Contributors: | Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Robotics and Semantic Systems, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Robotik och Semantiska System, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator, Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Originator |
| Source: | IEEE Robotics and Automation Letters. 7(3):8391-8398 |
| Subject Terms: | Engineering and Technology, Electrical Engineering, Electronic Engineering, Information Engineering, Control Engineering, Teknik, Elektroteknik och elektronik, Reglerteknik, Robotics and automation, Robotik och automation, Natural Sciences, Computer and Information Sciences, Computer graphics and computer vision, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorgrafik och datorseende |
| Description: | Contact-rich manipulation tasks remain a hard problem in robotics that requires interaction with unstructured environments. Reinforcement Learning (RL) is one potential solution to such problems, as it has been successfully demonstrated on complex continuous control tasks. Nevertheless, current state-of-the-art methods require policy training in simulation to prevent undesired behavior and later domain transfer even for simple skills involving contact. In this paper, we address the problem of learning contact-rich manipulation policies by extending an existing skill-based RL framework with a variable impedance action space. Our method leverages a small set of suboptimal demonstration trajectories and learns from both position, but also crucially impedance-space information. We evaluate our method on a number of peg-in-hole task variants with a Franka Panda arm and demonstrate that learning variable impedance actions for RL in Cartesian space can be deployed directly on the real robot, without resorting to learning in simulation. |
| Access URL: | https://doi.org/10.1109/LRA.2022.3187276 |
| Database: | SwePub |
| FullText | Links: – Type: other Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1109/LRA.2022.3187276# Name: EDS - SwePub (ns324271) Category: fullText Text: View record in SwePub |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.0d10c436.e705.4ed3.8748.87f92ff3588e RelevancyScore: 1015 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1015.01336669922 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Variable impedance skill learning for contact-rich manipulation – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Yang%2C+Quantao%22">Yang, Quantao</searchLink><br /><searchLink fieldCode="AR" term="%22Dürr%2C+Alexander%22">Dürr, Alexander</searchLink><br /><searchLink fieldCode="AR" term="%22Topp%2C+Elin+Anna%22">Topp, Elin Anna</searchLink><br /><searchLink fieldCode="AR" term="%22Stork%2C+Johannes%22">Stork, Johannes</searchLink><br /><searchLink fieldCode="AR" term="%22Stoyanov%2C+Todor%22">Stoyanov, Todor</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Robotics and Semantic Systems, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Robotik och Semantiska System, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator<br />Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Originator – Name: TitleSource Label: Source Group: Src Data: <i>IEEE Robotics and Automation Letters</i>. 7(3):8391-8398 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Engineering+and+Technology%22">Engineering and Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Electrical+Engineering%22">Electrical Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Electronic+Engineering%22">Electronic Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Information+Engineering%22">Information Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Control+Engineering%22">Control Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Teknik%22">Teknik</searchLink><br /><searchLink fieldCode="DE" term="%22Elektroteknik+och+elektronik%22">Elektroteknik och elektronik</searchLink><br /><searchLink fieldCode="DE" term="%22Reglerteknik%22">Reglerteknik</searchLink><br /><searchLink fieldCode="DE" term="%22Robotics+and+automation%22">Robotics and automation</searchLink><br /><searchLink fieldCode="DE" term="%22Robotik+och+automation%22">Robotik och automation</searchLink><br /><searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+graphics+and+computer+vision%22">Computer graphics and computer vision</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Datorgrafik+och+datorseende%22">Datorgrafik och datorseende</searchLink> – Name: Abstract Label: Description Group: Ab Data: Contact-rich manipulation tasks remain a hard problem in robotics that requires interaction with unstructured environments. Reinforcement Learning (RL) is one potential solution to such problems, as it has been successfully demonstrated on complex continuous control tasks. Nevertheless, current state-of-the-art methods require policy training in simulation to prevent undesired behavior and later domain transfer even for simple skills involving contact. In this paper, we address the problem of learning contact-rich manipulation policies by extending an existing skill-based RL framework with a variable impedance action space. Our method leverages a small set of suboptimal demonstration trajectories and learns from both position, but also crucially impedance-space information. We evaluate our method on a number of peg-in-hole task variants with a Franka Panda arm and demonstrate that learning variable impedance actions for RL in Cartesian space can be deployed directly on the real robot, without resorting to learning in simulation. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1109/LRA.2022.3187276" linkWindow="_blank">https://doi.org/10.1109/LRA.2022.3187276</link> |
| PLink | https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.0d10c436.e705.4ed3.8748.87f92ff3588e |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/LRA.2022.3187276 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 8 StartPage: 8391 Subjects: – SubjectFull: Engineering and Technology Type: general – SubjectFull: Electrical Engineering Type: general – SubjectFull: Electronic Engineering Type: general – SubjectFull: Information Engineering Type: general – SubjectFull: Control Engineering Type: general – SubjectFull: Teknik Type: general – SubjectFull: Elektroteknik och elektronik Type: general – SubjectFull: Reglerteknik Type: general – SubjectFull: Robotics and automation Type: general – SubjectFull: Robotik och automation Type: general – SubjectFull: Natural Sciences Type: general – SubjectFull: Computer and Information Sciences Type: general – SubjectFull: Computer graphics and computer vision Type: general – SubjectFull: Naturvetenskap Type: general – SubjectFull: Data- och informationsvetenskap (Datateknik) Type: general – SubjectFull: Datorgrafik och datorseende Type: general Titles: – TitleFull: Variable impedance skill learning for contact-rich manipulation Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Yang, Quantao – PersonEntity: Name: NameFull: Dürr, Alexander – PersonEntity: Name: NameFull: Topp, Elin Anna – PersonEntity: Name: NameFull: Stork, Johannes – PersonEntity: Name: NameFull: Stoyanov, Todor – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Robotics and Semantic Systems, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Robotik och Semantiska System, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 30 M: 06 Type: published Y: 2022 Identifiers: – Type: issn-print Value: 23773766 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 7 – Type: issue Value: 3 Titles: – TitleFull: IEEE Robotics and Automation Letters Type: main |
| ResultId | 1 |