Academic Journal

A comprehensive land-surface vegetation model for multi-stream data assimilation, D&B v1.0

Bibliographic Details
Title: A comprehensive land-surface vegetation model for multi-stream data assimilation, D&B v1.0
Authors: Knorr, Wolfgang, Williams, Matthew, Thum, Tea, Kaminski, Thomas, Voßbeck, Michael, Scholze, Marko, Quaife, Tristan, Smallman, T. Luke, Steele-Dunne, Susan C., Vreugdenhil, Mariette, Green, Tim, Zaehle, Sönke, Aurela, Mika, Bouvet, Alexandre, Bueechi, Emanuel, Dorigo, Wouter, El-Madany, Tarek S., Migliavacca, Mirco, Honkanen, Marika, Kerr, Yann H., Kontu, Anna, Lemmetyinen, Juha, Lindqvist, Hannakaisa, Mialon, Arnaud, Miinalainen, Tuuli, Pique, Gaétan, Ojasalo, Amanda, Quegan, Shaun, Rayner, Peter J., Reyes-Muñoz, Pablo, Rodríguez-Fernández, Nemesio, Schwank, Mike, Verrelst, Jochem, Zhu, Songyan, Schüttemeyer, Dirk, Drusch, Matthias
Contributors: Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Aerosols, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Aerosoler, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), BECC: Biodiversity and Ecosystem services in a Changing Climate, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), BECC: Biodiversity and Ecosystem services in a Changing Climate, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), MERGE: ModElling the Regional and Global Earth system, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), MERGE: ModElling the Regional and Global Earth system, Originator
Source: Geoscientific Model Development. 18(7):2137-2159
Subject Terms: Natural Sciences, Earth and Related Environmental Sciences, Physical Geography, Naturvetenskap, Geovetenskap och relaterad miljövetenskap, Naturgeografi
Description: Advances in Earth observation capabilities mean that there is now a multitude of spatially resolved data sets available that can support the quantification of water and carbon pools and fluxes at the land surface. However, such quantification ideally requires efficient synergistic exploitation of those data, which in turn requires carbon and water land-surface models with the capability to simultaneously assimilate several such data streams. The present article discusses the requirements for such a model and presents one such model based on the combination of the existing Data Assimilation Linked Ecosystem Carbon (DALEC) land vegetation carbon cycle model with the Biosphere Energy-Transfer HYdrology (BETHY) land-surface and terrestrial vegetation scheme. The resulting D&B model, made available as a community model, is presented together with a comprehensive evaluation for two selected study sites of widely varying climate. We then demonstrate the concept of land-surface modelling aided by data streams that are available from satellite remote sensing. Here we present D&B with four observation operators that translate model-derived variables into measurements available from such data streams, namely fraction of photosynthetically active radiation (FAPAR), solar-induced chlorophyll fluorescence (SIF), vegetation optical depth (VOD) at microwave frequencies and near-surface soil moisture (also available from microwave measurements). As a first step, we evaluate the combined model system using local observations and finally discuss the potential of the system presented for multi-stream data assimilation in the context of Earth observation systems.
Access URL: https://doi.org/10.5194/gmd-18-2137-2025
Database: SwePub
Description
ISSN:1991959X
19919603
DOI:10.5194/gmd-18-2137-2025