Academic Journal

Study of Synthesis Pathways of the Essential Polyunsaturated Fatty Acid 20:5n-3 in the Diatom Chaetoceros Muelleri Using 13C-Isotope Labeling

Bibliographic Details
Title: Study of Synthesis Pathways of the Essential Polyunsaturated Fatty Acid 20:5n-3 in the Diatom Chaetoceros Muelleri Using 13C-Isotope Labeling
Authors: Marine Remize, Frédéric Planchon, Ai Ning Loh, Fabienne Le Grand, Antoine Bideau, Nelly Le Goic, Elodie Fleury, Philippe Miner, Rudolph Corvaisier, Aswani Volety, Philippe Soudant
Source: Biomolecules, Vol 10, Iss 5, p 797 (2020)
Publisher Information: MDPI AG, 2020.
Publication Year: 2020
Collection: LCC:Microbiology
Subject Terms: synthesis pathway, diatom, 20:5n-3 (EPA), Chaetoceros muelleri, acyl-editing mechanism, compound-specific isotope analysis, Microbiology, QR1-502
Description: The present study sought to characterize the synthesis pathways producing the essential polyunsaturated fatty acid (PUFA) 20:5n-3 (EPA). For this, the incorporation of 13C was experimentally monitored into 10 fatty acids (FA) during the growth of the diatom Chaetoceros muelleri for 24 h. Chaetoceros muelleri preferentially and quickly incorporated 13C into C18 PUFAs such as 18:2n-6 and 18:3n-6 as well as 16:0 and 16:1n-7, which were thus highly 13C-enriched. During the experiment, 20:5n-3 and 16:3n-4 were among the least-enriched fatty acids. The calculation of the enrichment percentage ratio of a fatty acid B over its suspected precursor A allowed us to suggest that the diatom produced 20:5n-3 (EPA) by a combination between the n-3 (via 18:4n-3) and n-6 (via 18:3n-6 and 20:4n-6) synthesis pathways as well as the alternative ω-3 desaturase pathway (via 20:4n-6). In addition, as FA from polar lipids were generally more enriched in 13C than FA from neutral lipids, particularly for 18:1n-9, 18:2n-6 and 18:3n-6, the existence of acyl-editing mechanisms and connectivity between polar and neutral lipid fatty acid pools were also hypothesized. Because 16:3n-4 and 20:5n-3 presented the same concentration and enrichment dynamics, a structural and metabolic link was proposed between these two PUFAs in C. muelleri.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2218-273X
Relation: https://www.mdpi.com/2218-273X/10/5/797; https://doaj.org/toc/2218-273X
DOI: 10.3390/biom10050797
Access URL: https://doaj.org/article/0c88258ef9334a2f9e21691adb677b15
Accession Number: edsdoj.0c88258ef9334a2f9e21691adb677b15
Database: Directory of Open Access Journals
Description
ISSN:2218273X
DOI:10.3390/biom10050797