Academic Journal
Решение приближенных уравнений: декомпозиция пространственного движения управляемого объекта
| Title: | Решение приближенных уравнений: декомпозиция пространственного движения управляемого объекта |
|---|---|
| Source: | Современные проблемы науки и образования. |
| Publisher Information: | Общество с ограниченной ответственностью "Издательский Дом "Академия Естествознания", 2014. |
| Publication Year: | 2014 |
| Subject Terms: | РЕШЕНИЕ, ОСНОВНОЕ УРАВНЕНИЕ, ПРИБЛИЖЕННОЕ УРАВНЕНИЕ, ДЕКОМПОЗИЦИЯ, УПРАВЛЯЕМЫЙ ОБЪЕКТ, ПРОСТРАНСТВЕННОЕ ДВИЖЕНИЕ, ДИНАМИЧЕСКАЯ СИСТЕМА |
| Description: | In the appendix to the study of spatial motion of the controlled object are given approximate decomposition methods for the characteristic polynomial. The methods are based on the use of the approximate characteristic equation (considered as a basic equation; with the exact numbers). Used and additional information, taking into account the degree of uncertainty of both the equation and its solutions; reduces to the specification of the absolute errors of the approximation numbers. Error numbers involved in the calculations are taken into account only to determine the error of the root of the characteristic polynomial for a given maximum rounding error permitted in the process of computing. The proposed method is carried out decomposition of longitudinal and lateral movements of the controlled object. The technique is recommended for use in cognitive analysis and subsequent synthesis of composite materials such as complex systems. В приложении к исследованию пространственного движения управляемого объекта приводятся приближенные методы декомпозиции характеристического полинома. Методы основаны на использовании приближенного характеристического уравнения (рассматривается как основное уравнение; с точными числами). Используется и дополнительная информация, учитывающая степень неопределенности как самого уравнения, так и его решений; сводится к заданию абсолютных погрешностей используемых приближенных чисел. Погрешности чисел, участвующих в вычислениях, учитываются только для определения погрешности корня характеристического полинома при заданной максимальной погрешности округления, допустимой в процессе вычислений. По предложенной методике осуществляется декомпозиция продольного и бокового движений управляемого объекта. Методика рекомендуется для использования при когнитивном анализе и последующем синтезе композиционных материалов как сложных систем. |
| Document Type: | Article |
| File Description: | text/html |
| Language: | Russian |
| ISSN: | 1817-6321 |
| Access URL: | http://cyberleninka.ru/article_covers/15943068.png http://cyberleninka.ru/article/n/reshenie-priblizhennyh-uravneniy-dekompozitsiya-prostranstvennogo-dvizheniya-upravlyaemogo-obekta |
| Accession Number: | edsair.od......2806..266ec84c65d40b6a585f3c17b8c65a0f |
| Database: | OpenAIRE |
| ISSN: | 18176321 |
|---|