Academic Journal
Euclid: Searching for pair-instability supernovae with the Deep Survey
| Τίτλος: | Euclid: Searching for pair-instability supernovae with the Deep Survey |
|---|---|
| Συγγραφείς: | Moriya, T.J., Inserra, C., Courbin, Frédéric, Euclid Collaboration |
| Πηγή: | Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB)) |
| Στοιχεία εκδότη: | EDP Sciences, 2025. |
| Έτος έκδοσης: | 2025 |
| Θεματικοί όροι: | Satèl·lits artificials, Cosmologia, Artificial satellites, Stars, Estels, Cosmology |
| Περιγραφή: | Pair-instability supernovae are theorized supernovae that have not yet been observationally confirmed. They are predicted to exist in low-metallicity environments. Because overall metallicity becomes lower at higher redshifts, deep near-infrared transient surveys probing high-redshift supernovae are suitable to discover pair-instability supernovae. The Euclid satellite, which is planned launch in 2023, has a near-infrared wide-field instrument that is suitable for a high-redshift supernova survey. The Euclid Deep Survey is planned to make regular observations of three Euclid Deep Fields (40 deg2 in total) spanning Euclid’s six-year primary mission period. While the observations of the Euclid Deep Fields are not frequent, we show that the predicted long duration of pair-instability supernovae would allow us to search for high-redshift pair-instability supernovae with the Euclid Deep Survey. Based on the current observational plan of the Euclid mission, we conduct survey simulations in order to estimate the expected numbers of pair-instability supernova discoveries. We find that up to several hundred pair-instability supernovae at z . 3.5 can be discovered within the Euclid Deep Survey. We also show that pair-instability supernova candidates can be efficiently identified by their duration and color, which can be determined with the current Euclid Deep Survey plan. We conclude that the Euclid mission can lead to the first confirmation of pair-instability supernovae if their event rates are as high as those predicted by recent theoretical studies. We also update the expected numbers of superluminous supernova discoveries in the Euclid Deep Survey based on the latest observational plan. |
| Τύπος εγγράφου: | Article |
| Περιγραφή αρχείου: | application/pdf |
| Γλώσσα: | English |
| Σύνδεσμος πρόσβασης: | https://hdl.handle.net/2445/222063 |
| Αριθμός Καταχώρησης: | edsair.od.......963..d0c9fdf636cde4bb11b5d7f5b5d953c8 |
| Βάση Δεδομένων: | OpenAIRE |
| FullText | Text: Availability: 0 |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.od.......963..d0c9fdf636cde4bb11b5d7f5b5d953c8 RelevancyScore: 1002 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1002.20513916016 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Euclid: Searching for pair-instability supernovae with the Deep Survey – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Moriya%2C+T%2EJ%2E%22">Moriya, T.J.</searchLink><br /><searchLink fieldCode="AR" term="%22Inserra%2C+C%2E%22">Inserra, C.</searchLink><br /><searchLink fieldCode="AR" term="%22Courbin%2C+Frédéric%22">Courbin, Frédéric</searchLink><br /><searchLink fieldCode="AR" term="%22Euclid+Collaboration%22">Euclid Collaboration</searchLink> – Name: TitleSource Label: Source Group: Src Data: Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB)) – Name: Publisher Label: Publisher Information Group: PubInfo Data: EDP Sciences, 2025. – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Satèl·lits+artificials%22">Satèl·lits artificials</searchLink><br /><searchLink fieldCode="DE" term="%22Cosmologia%22">Cosmologia</searchLink><br /><searchLink fieldCode="DE" term="%22Artificial+satellites%22">Artificial satellites</searchLink><br /><searchLink fieldCode="DE" term="%22Stars%22">Stars</searchLink><br /><searchLink fieldCode="DE" term="%22Estels%22">Estels</searchLink><br /><searchLink fieldCode="DE" term="%22Cosmology%22">Cosmology</searchLink> – Name: Abstract Label: Description Group: Ab Data: Pair-instability supernovae are theorized supernovae that have not yet been observationally confirmed. They are predicted to exist in low-metallicity environments. Because overall metallicity becomes lower at higher redshifts, deep near-infrared transient surveys probing high-redshift supernovae are suitable to discover pair-instability supernovae. The Euclid satellite, which is planned launch in 2023, has a near-infrared wide-field instrument that is suitable for a high-redshift supernova survey. The Euclid Deep Survey is planned to make regular observations of three Euclid Deep Fields (40 deg2 in total) spanning Euclid’s six-year primary mission period. While the observations of the Euclid Deep Fields are not frequent, we show that the predicted long duration of pair-instability supernovae would allow us to search for high-redshift pair-instability supernovae with the Euclid Deep Survey. Based on the current observational plan of the Euclid mission, we conduct survey simulations in order to estimate the expected numbers of pair-instability supernova discoveries. We find that up to several hundred pair-instability supernovae at z . 3.5 can be discovered within the Euclid Deep Survey. We also show that pair-instability supernova candidates can be efficiently identified by their duration and color, which can be determined with the current Euclid Deep Survey plan. We conclude that the Euclid mission can lead to the first confirmation of pair-instability supernovae if their event rates are as high as those predicted by recent theoretical studies. We also update the expected numbers of superluminous supernova discoveries in the Euclid Deep Survey based on the latest observational plan. – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article – Name: Format Label: File Description Group: SrcInfo Data: application/pdf – Name: Language Label: Language Group: Lang Data: English – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://hdl.handle.net/2445/222063" linkWindow="_blank">https://hdl.handle.net/2445/222063</link> – Name: AN Label: Accession Number Group: ID Data: edsair.od.......963..d0c9fdf636cde4bb11b5d7f5b5d953c8 |
| PLink | https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.od.......963..d0c9fdf636cde4bb11b5d7f5b5d953c8 |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: English Subjects: – SubjectFull: Satèl·lits artificials Type: general – SubjectFull: Cosmologia Type: general – SubjectFull: Artificial satellites Type: general – SubjectFull: Stars Type: general – SubjectFull: Estels Type: general – SubjectFull: Cosmology Type: general Titles: – TitleFull: Euclid: Searching for pair-instability supernovae with the Deep Survey Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Moriya, T.J. – PersonEntity: Name: NameFull: Inserra, C. – PersonEntity: Name: NameFull: Courbin, Frédéric – PersonEntity: Name: NameFull: Euclid Collaboration IsPartOfRelationships: – BibEntity: Dates: – D: 07 M: 07 Type: published Y: 2025 Identifiers: – Type: issn-locals Value: edsair |
| ResultId | 1 |