Academic Journal

Automating the amino acid identification in elliptical dichroism spectrometer with Machine Learning

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Automating the amino acid identification in elliptical dichroism spectrometer with Machine Learning
Συγγραφείς: Ridhanya Sree Balamurugan, Yusuf Asad, Tommy Gao, Dharmakeerthi Nawarathna, Umamaheswara Rao Tida, Dali Sun
Πηγή: PLoS One
PLoS ONE, Vol 20, Iss 1, p e0317130 (2025)
Στοιχεία εκδότη: Public Library of Science (PLoS), 2025.
Έτος έκδοσης: 2025
Θεματικοί όροι: Light, Dichroism, Science, Medical Biochemistry, Circular dichroism, Biochemistry, Absorption, Machine Learning, Automation, Machine learning, Methods, Chomatographic analysis, Amino Acids, Mass spectrometry, Circular dichroism/methods, Theory and Algorithms, Circular Dichroism, Methodology, and Proteins, Pharmacy and Pharmaceutical Sciences, Mechanization, Amino acids, Medicine, Health aspects, Peptides, Algorithms, Research Article
Περιγραφή: Amino acid identification is crucial across various scientific disciplines, including biochemistry, pharmaceutical research, and medical diagnostics. However, traditional methods such as mass spectrometry require extensive sample preparation and are time-consuming, complex and costly. Therefore, this study presents a pioneering Machine Learning (ML) approach for automatic amino acid identification by utilizing the unique absorption profiles from an Elliptical Dichroism (ED) spectrometer. Advanced data preprocessing techniques and ML algorithms to learn patterns from the absorption profiles that distinguish different amino acids were investigated to prove the feasibility of this approach. The results show that ML can potentially revolutionize the amino acid analysis and detection paradigm.
Τύπος εγγράφου: Article
Other literature type
Περιγραφή αρχείου: application/pdf
Γλώσσα: English
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0317130
Σύνδεσμος πρόσβασης: https://pubmed.ncbi.nlm.nih.gov/39823430
https://doaj.org/article/6669965921f5422ba8c7811b387cde3a
Rights: CC BY
URL: http://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Αριθμός Καταχώρησης: edsair.doi.dedup.....f03fb0f1fc33e4dbdf92b7ce71044f97
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:19326203
DOI:10.1371/journal.pone.0317130