Convergence analysis of a Schrödinger problem with moving boundary

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Convergence analysis of a Schrödinger problem with moving boundary
Συγγραφείς: Daniel G. Alfaro Vigo, Daniele C.R. Gomes, Bruno A. do Carmo, Mauro A. Rincon
Πηγή: Mathematics and Computers in Simulation. 238:45-64
Publication Status: Preprint
Στοιχεία εκδότη: Elsevier BV, 2025.
Έτος έκδοσης: 2025
Θεματικοί όροι: Mathematics - Analysis of PDEs, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Analysis of PDEs (math.AP)
Περιγραφή: In this article, we present the mathematical analysis of the convergence of the linearized Crank-Nicolson Galerkin method for a nonlinear Schrodinger problem related to a domain with a moving boundary. The convergence analysis of the numerical method is carried out for both semi-discrete and fully discrete problems. An optimal error estimate in the $L^2$-norm with order ${O}(τ^2+ h^s),~ 2\leq s\leq r$, where $h$ is the finite element mesh size parameter, $τ$ is the time step, and $r-1$ represents the degree of the finite element polynomial basis. Numerical simulations are provided to confirm the consistency between theoretical and numerical results, validating the method and the order of convergence for different degrees $p\geq 1$ of the Lagrange polynomials and also for Hermite polynomials (degree $p=3$), which form the basis of the approximate solution.
Τύπος εγγράφου: Article
Γλώσσα: English
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2025.04.042
DOI: 10.48550/arxiv.2410.08910
Σύνδεσμος πρόσβασης: http://arxiv.org/abs/2410.08910
Rights: Elsevier TDM
CC BY NC ND
Αριθμός Καταχώρησης: edsair.doi.dedup.....ed16ebd559e1d2d5c8f92bccf0c7d1fa
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:03784754
DOI:10.1016/j.matcom.2025.04.042