Analysis of a double Timoshenko beam model

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Analysis of a double Timoshenko beam model
Συγγραφείς: Bazarra, N., Bochicchio, I., Fernández, J. R., Naso, M. G.
Πηγή: Investigo. Repositorio Institucional de la Universidade de Vigo
Universidade de Vigo (UVigo)
Στοιχεία εκδότη: Elsevier BV, 2024.
Έτος έκδοσης: 2024
Θεματικοί όροι: exponential stability, 12 Matemáticas, existence, Uniqueness of solutions of dynamical problems in solid mechanics, uniqueness, error estimate, Lyapunov functional, spatial finite element method, Vibrations in dynamical problems in solid mechanics, Existence of solutions of dynamical problems in solid mechanics, well-posedness, Suspension bridge system, Nonlinear oscillations, Well posedness, Exponential decay, Finite elements, Error estimates, Rods (beams, columns, shafts, arches, rings, etc.), PDEs in connection with mechanics of deformable solids, linear semigroup theory, temporal backward Euler scheme
Περιγραφή: In this work we consider a double beam system modeled in the theory of Timoshenko. An existence and uniqueness result is achieved by using the standard theory of linear semigroup. The exponential stability is also proved. Then, fully discrete approximations are introduced and a prior error estimates are shown. Finally, some numerical simulations are presented.
Agencia Estatal de Investigación | Ref. PID2023-146359NB-I00
Universidade de Vigo/CISUG
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml; application/pdf
Γλώσσα: English
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2024.128315
Σύνδεσμος πρόσβασης: https://linkinghub.elsevier.com/retrieve/pii/S0022247X24002373
http://hdl.handle.net/11093/9073
https://hdl.handle.net/11379/598185
https://doi.org/10.1016/j.jmaa.2024.128315
https://hdl.handle.net/11386/4863533
https://doi.org/10.1016/j.jmaa.2024.128315
https://www.sciencedirect.com/science/article/pii/S0022247X24002373?via=ihub
Rights: CC BY NC
CC BY NC ND
Αριθμός Καταχώρησης: edsair.doi.dedup.....ec5575a62ba7d08c0ffeb66b7ca18e2b
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:0022247X
DOI:10.1016/j.jmaa.2024.128315